论文部分内容阅读
轻质镁合金具有抗震、高比强度、良好的热传递、良好的工艺性能以及其它许多优点(例如易于回收),因而在航空、航天、汽车工业、电子等领域,特别因其重量轻的优势,在轻量化领域是一种极具理想应用前景的材料。当前,如何进一步提高镁合金强度以及开发高性能耐热镁合金是未来一项主攻任务,而合金化是提高力学性能的最有效,最直接的方法。本文使用第一性原理研究合金元素Si、Ca、Sn、Sr和La固溶入镁对镁结构、电子结构、弹性和热力学性质的影响;LixMg16Sn8(x=0,1,2,3)相的结构、结构稳定性和弹性性能;Mg-Sn基四元合金Mg-Sn-Si-Ca(Sr)中析出相的结构、电子结构、弹性性能和热力学性能;Mg-Sn基四元合金Mg-Sn-Mn(Si)-La中镧化合物析出相的结构、电子结构、弹性和热力学性质;压力对MgxLa(x=1,2,3)结构、电子结构、弹性以及热力学性能的影响。以上参数对合金性能有重要影响,但用实验手段较难探究到其规律,通过本研究可以获得理论参数,从而对镁合金设计开发和实验起到理论指导作用。本研究得到如下结论:(1)计算了镁基固溶体Mg-R(R=Si,Ca,Sn,Sr,La)的结构、电子结构、弹性性能和热力学性能等。当合金固溶度为2.77 at.%时,Mg-R合金均结构稳定,具有金属特性且都呈延性,这些合金元素的固溶改变了镁的延展性、抗体积形变能力、抗剪切形变能力和硬度。各固溶体的热容随着温度的升高而增大,但导热系数随着温度的升高而不断降低。(2)计算了LixMg16Sn8(x=0,1,2,3)的晶体结构和弹性性能。LixMg16Sn8(x=0,1,2,3)各相的合金化过程均容易进行且结构稳定。Li的间隙固溶降低了Mg2Sn的合金化能力和结构稳定性,且固溶Li原子数越多,合金化能力和结构稳定性越弱。随着间隙掺杂入Mg2Sn中Li原子数目的增多,Mg2Sn的抗体积形变能力、抗剪切形变能力、硬度不断下降。Li掺杂使Mg2Sn由脆性转变为延性,且掺杂入Li原子数越多,合金延展性越好。(3)计算了Mg-Sn-Si-Ca(Sr)合金系中析出相Mg2Si、Mg2Sn、Ca Mg Si和Mg Sn Sr的结构、电子结构、机械性能和热力学性能。合金化能力按Mg2Si2Sn2Sn2Si2Sn、Ca Mg Si和Mg Sn Sr相为弹性各向异性,Mg2Si相具有弹性各向同性。四种化合物的熵和热容随温度的升高而增加,导热系数将随温度升高而降低。计算了Mg-Sn-Mn(Si)-La合金系中Mg17La2、La5Sn3和La5Si4的结构、电子结构、力学性质和热力学性能。在Mg-Sn合金中添加Mn、Si和La合金元素,由于形成了金属间化合物La5Si4和La5Sn3相而使合金的结构稳定性得到提高。La5Si4硬质增强相的析出可使合金的硬度得到提升。La5Si4和La5Sn3均表现出延展性,而Mg17La2表现为脆性。随着温度的升高,这三种化合物的体积抗变形性和导热性将降低。随着温度升高,热稳定性也越好。(4)计算了MgxLa(x=1,2,3)的结构性质、态密度、弹性性能及热力学性能,并研究了压力对其性能的影响。增大压力三种化合物越难压缩。压力下总态密度曲线阐明了各化合物性能改变的物理本质。增大压力可明显提高它们的抗体积变形能力,适当增大压力可增强各化合物的延性。一定温度下,MgxLa(x=1,2,3)的体模量、Gibbs自由能和德拜温度随着压力的增大也在增大,热容随压力的增加而减小。