轧制氧化钇弥散强化钨再结晶行为研究

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:ming2331
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
钨基材料因其优良的高温性能被认为是最有希望的面向等离子体材料(PFM)。纯钨在核聚变装置中服役需要承受极高的热流密度(10~20 mW·s-1)、高能中子辐照(14 Me V)和高通量(1×1020~1×1024 m-1·s-1)等离子体冲击。长期的高温服役环境会使变形钨基材料不可避免的发生回复、再结晶和晶粒粗化现象。多晶钨晶间结合强度较低,再结晶过程会使晶界处的内应力发生变化,杂质亦会在高角度晶界周围富集,晶粒粗化更会加剧脆性裂纹延晶界扩展,从而引起再结晶脆化现象,降低材料的机械性能。本文通过不同温度下的等温退火实验对50%轧制量的氧化钇弥散强化钨(WY50)高温服役条件下的硬度和显微组织演变规律进行研究,揭示了氧化钇颗粒对钨的再结晶行为和热稳定性的影响规律。与相同轧制量的纯钨热稳定性结果对比发现,氧化钇的引入提高了W的机械性能和再结晶温度并延缓了再结晶过程。等温退火实验得到的硬度退化曲线表明,WY50在整个退火过程中经历了典型的回复、再结晶和晶粒长大三个阶段。利用引入孕育时间tinc修正后的Johnson-Mehl-Avrami-Kolmogorov(JMAK)模型较好的表征了再结晶过程的硬度退化和再结晶体积分数随时间变化曲线;而回复阶段的硬度变化过程可以通过Kuhlmann模型准确拟合。同时,通过Arrhenius方程,计算得到WY50的激活能为508(1±4%)k J/mol。利用EBSD对烧结坯、轧板和再结晶过程不同时段的样品显微组织和织构的变化规律进行了深入分析。结果表明,烧结坯显微组织由大小不一的等轴晶组成,无明显织构,取向差趋近于Mackenzie分布;而塑性变形后形成了典型的形变组织,织构明显增强。随着再结晶的进行,初始轧制态形变组织被再结晶晶粒所取代,最终形成大量的无畸变的细小再结晶晶粒,取向差也恢复到Mackenzie分布。由EBSD结果计算出的回复区域与再结晶区域占比总和约等于通过硬度值所计算的再结晶体积分数。织构分析表明,轧制变形使WY50形成了很强的α织构({112}<110>组分)和γ织构(较强的{111}<110>组分和较弱的{111}<112>组分)。然而,不同退火温度下再结晶过程引起的织构变化规律并不完全一致。
其他文献
双金属包覆材料是由两种不同性能的金属结合而成的一种复合材料,它兼具两种组元金属的优点,弥补了各自的不足,有独特的综合性能,近年来得到了越来越多的应用。静液挤压工艺是一种特种挤压工艺,在高压液体环境下迫使材料发生变形。利用静液挤压工艺对双金属包覆材料进行加工,可以提高材料的塑性成形能力,同时也提高了双金属包覆材料的均匀性与界面结合能力,是双金属包覆材料加工变形的有效手段之一。由于静液挤压实验过程繁琐
我国已陆续建立了国家级、省级、地市级、县级康复中心以及大量的社区康复机构,基本上形成了覆盖全国的康复机构网络。但由于缺乏规范统一的行业管理标准,康复机构的发展受到较大限制。深入开展康复机构组织建设与管理研究,创新探索出适合我国国情的康复机构管理模式,规范康复机构建设和服务标准,对于指导我国各级各类康复机构发展具有重要的意义。本指南坚持“以患者为中心”,结合国际康复机构质量认证委员会(CARF)理念
中国低活化马氏体(CLAM)钢由于其良好的力学性能、较高的热导率和较低的热膨胀系数被选为核聚变堆包层模块结构材料之一,但其在550℃时受高温和辐照导致显微结构的不稳定、蠕变强度低,限制了其在聚变堆中的使用。氧化物弥散强化(ODS)钢是一种内部具有极高密度的Y-Ti-O的纳米团簇的低活化钢,这种Y-Ti-O纳米团簇的高温稳定性好,对位错运动具有强烈的阻碍作用,使ODS钢具有很高的拉伸强度、高温蠕变强
熔模铸造工艺复杂且技术要求较高,所以对熔模铸造的设备也必须有高的要求,本文主要针对熔模铸造中型砂监测设备即阻旋式料位计进行研究。阻旋式料位计是精密铸造行业中测量型砂料仓、检测物料高度的重要物件之一,而与其他料位计相比,具有功耗低,效率高、价格低等突出优势并符合机械产品节能高效的发展方向也因适应性强而被广泛使用。但阻旋式料位计的结构刚度较低,在实际使用中易受物料对其轴向载荷、径向载荷及倾覆力矩等复杂
本课题采用了放电等离子烧结技术,在真空条件下基于原位反应制备了一系列复合中间层材料来进一步扩散连接SiC陶瓷。在扩散焊过程中,通过开发原位自生的复合中间层材料,确立合适的连接工艺,表征和分析接头的微观组织和力学性能,进而探索接头中微观组织与力学性能的关系,进一步阐明接头的扩散连接机理。设计并制备出了理化性能及结构与SiC基体相近的陶瓷基复合中间层,通过降低界面处因中间层与SiC母材间热膨胀系数差异
近年来在汽车产业蓬勃发展的背景下,汽车行业所带来的环境污染和能源短缺问题日益凸显,实现汽车轻量化已经成为汽车行业未来发展的必然趋势。激光拼焊板冲压成形技术作为实现汽车轻量化的新型工艺技术,逐渐受到各大汽车公司和研究机构的重视。但是激光拼焊板由于存在焊缝区以及不同的母材区,造成板材各个区域材料性能差别很大。冲压成形过程中易产生破裂、起皱以及焊缝移动等缺陷。本课题以某车型后门内板为研究对象,首先对差厚
纤维素是一种独特的天然高分子聚合物,具有精细的横截面、吸收水分、高强度和耐久性、高热稳定性、良好的生物相容性、相对较低的成本和较低的密度高但机械性能好。通过化学修饰将官能团引入纤维素分子是实现纤维素化学修饰的关键方法之一,这些官能团可以赋予纤维素新的特性而不会破坏其许多所需的固有特性,通过接枝聚合的改性提供了改变纤维素的物理和化学特性并提高其功能性的手段。本论文中利用点击化学反应将螺旋聚苯异腈(P
20CrMnTi是我国常用的渗碳齿轮钢,在汽车、拖拉机和工程机械领域获得广泛应用。S48C钢是我国常用的中碳钢之一,调质处理后具有良好的力学性能。国内推土机用齿轮钢一般选用20CrMnTi,但大模数(m≧8)重载齿轮,20CrMnTi钢渗碳齿轮由于弯曲疲劳性能低,无法满足工艺要求,因此,有必要选择更高弯曲疲劳性能的齿轮钢。本文研究目标是选择22CrMoH和S48C钢分别经渗碳、淬火+低温回火以及中
随着航空航天工业的不断发展,采用高比强度的高温结构材料是现代空天装备技术发展的必然趋势。Ti2AlNb基合金具有高的比强度、良好的高温拉伸和疲劳强度,成为能在650~800℃使用的最具潜力的轻质高温结构材料。但是,由于该合金中金属键和共价键的混合键和方式使其存在本征脆性,实际中需进行热加工变形改善合金组织性能。当前国内外研究中多采用三相区及以上温度区间的热加工,配合跨相区的连续热处理改善合金初始组