算子的自半延拓

来源 :南京理工大学 | 被引量 : 0次 | 上传用户:ziones
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
对称算子的自伴延拓有两种方法,一种是Von Neumann方法,另一种是Calkin方法.但这两种延拓之间的联系一直不清楚,该文找到这两种抽象延拓方式之间关系.对于常数分算子而言,曹之江,刘景麟等人曾将抽象的Calkin自伴延拓与具体的边条件对应起来.而在讨论微分算子的特征值和谱时,边条件表达形式起到非常重要的作用.在该文中,我们将抽象的Von Neumann自伴延拓实现成具体的边条件的表达形式.这一结果对于利用Von Neumann自伴延拓形式讨论微分算子的谱找到一条新的途径.该文建立了如下形式的对称常微分算子的Von Neumann自伴延拓与以边条件形式表达的自伴延拓之间的对应关系:1)[0,1]区间上的n阶对称常微分算式;2)[0,∞)区间上二阶Sturm-Liouville算子的极限点和极限圆型;3)[0,∞)区间上高阶具有中间亏指数对称常微分算式.
其他文献
非饱和土中水流入渗问题属于水科学研究领域。该问题的研究在农田水利、水土工程、水文地质、生态环境等领域都占有重要地位。对该问题的早期研究中,忽略了空气压力变化对入渗
可逆系统是一类具有对合结构的保守动力系统,许多专家学者对此系统进行了大量的研究,并得到了许多重要的结论(见[3],[13]-[20]).例如,俄国数学家S.M.Sevywk在通常的非退化条
本文首先对带阻尼的线性波动方程及耦合矩阵为[a b-b a]线性波动方程耦合组分别建立了其初边值问题的解的能量指数衰减性及渐近稳定性.进一步,在矩阵的实Schur分解下,建立了线
线性模型是现代统计学中的一个重要分支,在生物、管理、地质、气象、农业、工业等许多领域有着广泛的应用.关于线性模型的研究,参数估计是重要的研究内容之一.特别地,针对最
该篇论文由三章组成,分别讨论下面四类具离散变量和连续变量的脉冲差分方程{Δy(n)+p(n)y(n-l)=0,n∈N(0),n≠n(Ⅰ)y(n+1)-y(n)=by(n),k∈N(1){Δ(y(n)+P(n-m))+Q(n)y(n-l)=0
该文研究了两类重要的非线性随机模型,即混合GARCH(Mixture Generalized Autoregressive Conditional Heteroscedasticity, 简称MGARCH)模型和n阶分形Brown运动(nth-order fr
该文考虑有界区域ΩCR上带齐次混合边值条件(即第三边值问题)的非齐次半线性椭圆型方程(略)正解的存在性和不存在性.其中常数α,λ≥0,p∈(1,N+2/N-2],N>2,p∈(1,∞),1 ≤N≤
工程界使用的小波一般而言是实值的紧支正交对称或反对称的,这有很多好处,尤其在数字图像的边界处理中。但许多学者和专家经过艰苦的努力都找不到实值的紧支正交对称或反对称的