论文部分内容阅读
Cu-Sn-Zn三元合金镀层有着良好的导电性,耐蚀性,耐磨性以及装饰性,被广泛应用在集成电路,射频元件和仿金仿银等领域。电化学沉积是最有效最方便的手段之一,具有工艺简单、环境适应性较高等特点。本文采用纳米复合电镀技术,分别采用直流电镀法和脉冲电镀法制备了TiO2颗粒增强Cu-Sn-Zn纳米复合镀层和TiO2溶胶增强Cu-Sn-Zn纳米复合镀层。研究了TiO2含量对复合镀层组织及性能的影响,分析了直流电镀纳米复合镀层与脉冲复合镀层结构与性能的区别。同时,为了进一步提高镀层的耐腐蚀性能,制备了Cu-Sn-Zn-TiO2/Ni多层纳米复合镀层,并研究了脉冲电镀对多层复合镀层组织及性能的影响。结果表明:(1)直流电镀法:相比于原始镀层,颗粒增强Cu-Sn-Zn-TiO2纳米复合镀层的硬度为382HV提高了16%,腐蚀速率降低了24.5%。同时,相比粉末增强Cu-Sn-Zn镀层,采用TiO2溶胶增强电镀技术制备的Cu-Sn-Zn-TiO2纳米复合镀层的硬度进一步提高到420 HV。腐蚀速率相比于原始镀层下降了43%,耐磨性也得到较大幅度的提高。(2)脉冲电镀法:原始Cu-Sn-Zn复合镀层硬度相比于直流镀层提高了15%,同时颗粒增强Cu-Sn-Zn-TiO2纳米复合镀层和溶胶增强Cu-Sn-Zn-TiO2纳米复合镀层的硬度分别提高到443 HV和478HV。同时发现,虽然脉冲镀层的硬度和耐磨性得到较大的提高,但是耐腐蚀性并没有发生较大的变化。最佳的Cu-Sn-Zn-1g/L TiO2粉末增强脉冲镀层和Cu-Sn-Zn-12.5mL/L TiO2溶胶增强脉冲镀层的腐蚀速率均维持在0.09mm/a和0.062 mm/a。(3)多层电镀法:无论是采用直流电源还是脉冲电源制备的复合镀层,Ni预镀层能更好的保持镀层的硬度,即使加入过多的TiO2也不会导致镀层硬度出现较大幅度的下降。硬度方面,粉末增强Cu-Sn-Zn-TiO2/Ni直流双层复合镀层和溶胶增强Cu-Sn-Zn-TiO2/Ni直流双层复合镀层的硬度分别提高到400 HV和427 HV,粉末增强Cu-Sn-Zn-TiO2/Ni脉冲双层复合镀层和溶胶增强Cu-Sn-Zn-TiO2/Ni脉冲双层复合镀层的硬度分别提高到451 HV和494 HV。在保持较好的硬度和耐磨性的同时,Cu-Sn-Zn-TiO2/Ni多层纳米复合镀层的耐蚀性得到明显提高。Cu-Sn-Zn-1g/L TiO2/Ni脉冲镀层和Cu-Sn-Zn-12.5mL/L TiO2/Ni脉冲镀层的腐蚀速率均达到最小值,分别从最初的0.098 mm/a下降到0.044 mm/a和0.042 mm/a。综上所述,相比于直流Cu-Sn-Zn复合镀层,采用Ni层作为预镀层,然后进行脉冲电镀制备的Cu-Sn-Zn-12.5mL/L TiO2/Ni脉冲双层复合镀层的硬度提高了49.5%,耐磨性提高了41.7%,耐蚀性提高了57.1%,这也证明此工艺是制备Cu-Sn-Zn复合镀层的最佳改进工艺。基于当前的研究成果,该工艺不仅仅可以应用到Cu-Sn-Zn三元合金镀层的工业生产中,也可应用到其他Cu合金的工业生产中。同时,依据TiO2增强机制,该成果也可以指导其他类型金属或者合金镀层的工业生产,以进一步提高镀层薄膜类产品的性能及使用寿命。