论文部分内容阅读
研究森林CH4通量变化过程与源汇转换格局是森林生态学、应用气象学及全球变化研究等相关学科及领域共同关注的重要科学主题。华北低丘山地地处暖温带气候区,因其特殊的地理位置和气候特征,一直是我国林业生态工程建设的重点区域之一,迄今为止该地区森林CH4通量变化及其控制机制的研究至今未见详尽的文献报道。因此,研究该地区人工林生态系统CH4通量变化特征、源汇转换过程及其影响机制,测算累计通量及其增温潜势,尤具重要科学价值和实践意义。基于闭路式涡度相关法(Close Path Eddy Covariance,CPEC)观测森林生态系统CH4通量的数据处理与质量控制技术及其理论依据还存在一定不确定性。需要根据具体下垫面情况,量化关键技术参数不确定性,评价数据质量,才能进行数据应用,而目前国内外相关研究报道缺乏。本研究于2016.7-2019.11期间,以华北南部低丘山地栓皮栎-侧柏-刺槐人工林生态系统为研究对象,在研究了解实际观测区域湍流运动特征的工作基础上,从流速、延迟时间和平均计算周期等方面,定量分析CPEC法观测CH4通量数据不确定性,进行数据质量评价,优化数据观测技术体系。采用优化后的CPEC系统,结合开路式涡度相关法(Open Path Eddy Covariance,OPEC),获取CH4通量观测数据,进一步研究CH4通量变化特征和影响机制,并了解源、汇转换过程,探讨CH4累积通量及其相对增温潜势,旨在为森林CH4通量长期定位观测提供技术支撑,为估算暖温带气候区人工林生态系统CH4收支、人工林应对气候变化提供科学依据,为进一步深入评价华北山区林业生态工程生态效应提供基础数据。主要结果如下:(1)大气湍流谱分析表明闭路涡度相关系统(CPEC)观测数据的质量满足涡度通量高频响应的观测需求以及湍流协方差基本理论的适用条件。晴天不同稳定状态下,风速、温度、CO2、H2O、CH4功率谱在惯性副区的斜率满足-2/3和-5/3,协谱满足-4/3斜率,仪器能很好的响应高频信号,能够符合通量观测的基本要求。以OPEC观测系统为准标准,对CPEC系统在不同流速观测得的原始10Hz数据进行的谱分析,发现合适的流速范围是大于31.5L·min-1,最合适流速为35.5L·min-1,仪器10Hz采样频率合理;并计算不同合适流速下CPEC系统的延迟时间,与OPEC观测系统相比,平均延迟时间为8-9s,经延迟校正后CPEC系统数据质量比较高。在今后通量观测试验中两系统可以作为并行观测互相弥补的观测技术手段。在本研究区下垫面情况下,平均计算周期为60min、15min的CH4通量数据分别较适合于研究月及其以上尺度、日及其以下尺度CH4通量变化特征。(2)利用footprint模型分析不同风向上通量源区的分布,结果表明观测所得数据在任何风向上均能较好地观测迎风向上的通量源区,所观测得到的数据具有较好的空间代表性。无论是在生长季还是在非生长季,不稳定状态下的源区面积均小于稳定状态,非生长季源区面积大于生长季。通量源区日变化分布具有非均匀性,白天的通量源区面积大于夜间,在中午时面积最小。(3)该人工林生态系统CH4通量有明显的日变化和季节变化规律。观测期间内各月CH4通量的月平均日变化为单峰趋势,白天CH4通量值为正,为CH4源,夜间CH4通量值为负,变化不明显。生长季CH4通量日平均最大值均低于非生长季。月平均日最大CH4通量值出现在3月,最小值出现在10月。不同时期的典型晴天和雨天CH4日变化特征发现:生长季和非生长季中晴天均具有明显日变化,雨天的日变化趋势多变,生长季中雨天的最大通量值明显低于晴天,生长季和非生长季的交接时期,雨天日变化不明显,而在非生长季与晴天变化趋势一致;人工林CH4通量具有明显的季节变化。3月份通量值达到全年最高高峰,6月达到全年第一个低峰,在10月降低到全年最低峰。华北低丘山地人工林是一个大气CH4源,CH4通量年排放量为2017年>2018年>2019年>2016年,主要原因是2016年降水量最大,约为2017年的2倍。研究降雨前、中、后期的CH4通量日变化特征发现,降雨对其有滞后效应,滞后期约3天左右,同时,降雨还会改变CH4日通量源/汇的短暂转换。降水强度和降水频率导致观测的CH4年通量结果不同。(4)基于PCA和RDA分析显示不同水热因子对CH4通量的影响存在显著差异。年尺度上,各水热因子与CH4通量均呈显著相关。但日尺度上,夏、冬两季,大气温度、相对湿度、净辐射和光合有效辐射均与CH4通量有显著相关关系,不同深度的土壤温度和土壤含水量与CH4通量均有一定的相关性,其中0-5cm土壤含水量与CH4通量的相关性最高,其次是5-10cm土壤温度。而降雨量对CH4通量的影响比较复杂。分析自然连续降雨(2016年10月19日-28日;2017年10月1日-15日)的不同时期各水热因子与CH4通量的关系显示:降雨前期,大气温度、净辐射、各层土壤温度与CH4通量有显著正相关,各层土壤含水量均与CH4通量有显著负相关;降雨影响期,相对湿度、净辐射、各层土壤温度以及10-20cm土壤含水量对CH4通量有显著负相关,只有5-10cm土壤含水量与CH4通量有显著正相关;降雨滞后期,CH4通量与气温、净辐射和0-5cm土壤温度对具有显著正相关关系,与相对湿度、10-15cm、15-20cm土壤温度和5-10cm、10-20cm土壤含水量具有显著负相关关系;降雨中期,相对湿度和各层土壤含水量正相关极显著,气温和各层土壤温度对CH4通量显性负相关;降雨末期,CH4通量与气温、净辐射和0-5cm土壤温度具有显著正相关关系,与相对湿度、10-20cm土壤含水量具有显著负相关关系。通过路径分析各主要影响的水热因子与CH4通量的综合效应,降水量、大气温度、净辐射、5-10cm土壤温度和相对湿度是影响CH4通量的主要因子,其对CH4通量的路径系数分别为0.61,0.58,-0.49,0.24,0.11,其中净辐射对其呈显著负相关关系。光合有效辐射和5-10cm土壤含水量对CH4通量的路径系数分别为0.05和0.02,影响相对较小。同时,净辐射和降雨量分别通过大气温度、土壤含水量等间接对CH4通量产生影响(5)本人工林生态系统春、夏、秋、冬四个季节的甲烷累积通量分别为0.03、0.021、0.012、0.019 kg·hm-2,占全年的比例为33.37、26.82、4.53和25.28%,其相对温室潜势分别为0.728 kg·CO2·hm-2、0.588 kg·CO2·hm-2、0.308 kg·CO2·hm-2和0.56 kg·CO2·hm-2,其年累积通量为0.078 kg·hm-2·a-1,该人工林生态系统甲烷气体的相对温室潜势为2.184kg·CO2·hm-2。