【摘 要】
:
大型托卡马克放电过程中,一些磁流体不稳定性引发的破裂将会导致等离子体放电终止。等离子体中大量热能和磁能将在毫秒量级内快速损失,这会对装置造成严重的危害。这些危害主要包括三方面:装置壁和偏滤器靶板的热负荷、真空室壁的电磁应力以及逃逸电流。避免和缓解等离子体破裂期间产生的高通量高能逃逸电子一直是破裂缓解的重要课题。在大量气体注入(Massive Gas Injection,MGI)系统主动触发等离子体
论文部分内容阅读
大型托卡马克放电过程中,一些磁流体不稳定性引发的破裂将会导致等离子体放电终止。等离子体中大量热能和磁能将在毫秒量级内快速损失,这会对装置造成严重的危害。这些危害主要包括三方面:装置壁和偏滤器靶板的热负荷、真空室壁的电磁应力以及逃逸电流。避免和缓解等离子体破裂期间产生的高通量高能逃逸电子一直是破裂缓解的重要课题。在大量气体注入(Massive Gas Injection,MGI)系统主动触发等离子体破裂的实验中,通过外加共振磁扰动(Resonant Magnetic Perturbation,RMP)抑制逃逸电流的方法已经应用在国内外众多装置上。然而不同尺寸的装置开展的这类逃逸电流抑制的实验研究存在一定的差异,因此深入开展不同参数下逃逸电子抑制物理机制的研究将有助于为逃逸电流抑制提供最优的解决方案。本文基于J-TEXT托卡马克装置的基本物理参数,运用代码NIMROD(Non-Ideal MHD with Rotation-Open Discussion)求解磁流体动力学(Magnetohydrodynamic,MHD)方程中的物理参量,在MGI主动触发等离子体破裂的条件下,提供破裂过程中电场与磁场的时间演化,进而开展外加不同相对相位下多模式磁扰动对逃逸电子输运的数值模拟研究。模拟结果表明,在等离子体放电过程中通过外加扰动场可以促进热猝灭期间磁拓扑结构快速随机化,从而影响逃逸电子的输运过程,达到有效地抑制逃逸电流的目的。在预存磁岛混合模式下,不同相对相位的预存m/n=2/1磁岛与m/n=3/1磁岛对MGI触发破裂过程中的逃逸电子的抑制作用有着明显差异。当2/1磁岛和3/1磁岛O点的环向相位同为330°时(接近MGI注气口环向位置),可以达到逃逸电子的最佳抑制效果。此外,逃逸电子的损失剩余率与2/1磁岛和3/1磁岛之间的相对环向相位呈现出类正弦的依赖关系。对模拟中的对比算例进行分析,结果表明宏观磁流体不稳定性的演化会造成磁面的随机化,有利于增强逃逸电子的径向输运,导致逃逸电子快速撞壁。因此逃逸电子的损失过程与磁扰动引起的磁面随机化程度密切相关,同时磁扰动的大小也在很大程度上受到杂质气体在等离子体区域内沉积位置的影响,尤其是q=2面以内的杂质。2/1磁岛和3/1磁岛之间的相对相位差会影响杂质的径向输运进程,在很大程度上影响破裂过程中的磁扰动水平。此外,J-TEXT装置的实验结果表明,当2/1磁岛的相位固定时,不同相位的3/1磁岛对逃逸电流呈现出了不同的抑制效果:当3/1磁岛的X点靠近MGI注气口时,逃逸电子抑制不完全;当3/1磁岛的O点靠近MGI注气口时,可以完全抑制逃逸电子的产生。本文证明了在MGI触发等离子体破裂时,2/1和3/1磁岛的相对相位对逃逸电子抑制有着重要影响。因此,在多模式共存的情况下,混合模式的特定相位可以为RMP抑制逃逸电流的方法提供有效思路。
其他文献
负压伺服系统能够产生高精度、高动态的压力信号,可以为飞行器的半实物仿真提供真实的气压环境。在负压伺服系统中存在由伺服阀流量特性、容腔的热传递效应、伺服阀的内部泄漏等导致的强非线性和不确定性问题,使得线性控制器在大范围压力控制时,效果不佳。针对以上问题,本文提出了基于神经网络的模型参考自适应控制策略,设计了自适应神经网络控制器,并对系统进行了仿真分析和实验研究,最终实现了大范围压力控制的一致性。本文
结构相变是指材料在相变温度的附近受到外部因素影响下,可以在至少两种不同的结构状态之间进行可逆转变的性质,这种性质使得相变材料可以应用在传感器、数据存储和开关设备等多个领域。有机-无机杂化二维钙钛矿是一种常见的结构相变材料,因其结构相变性质与光电器件的设计和应用息息相关而备受关注。但是,目前对于有机-无机杂化二维钙钛矿结构相变潜在机制的研究还不够完善,对于其结构相变的调控也很难实现,这阻碍了利用其结
有机-无机杂化金属卤化物钙钛矿材料凭借其优异的光电特性、可调节的带隙和可溶液法制备等优点,受到了广泛关注。钙钛矿太阳能电池(PSCs)的光电转换效率在短短数年内已由最初的3.8%迅速提升至25.5%。目前,高效PSCs的光活性层通常为溶液法制备的多晶钙钛矿薄膜,由于钙钛矿材料对缺陷容忍度高,使得采用低纯度的材料获得高性能的器件成为可能。为进一步研究钙钛矿材料的本征特性,本文选取钙钛矿单晶作为研究对
研究背景与目的:肝纤维化(liver fibrosis,LF)是慢性肝损伤引起的组织修复过程,也是慢性肝损伤发展为肝硬化、肝癌的必经过程。肝纤维化过程伴随着肝脏炎症反应,肝细胞死亡不仅能释放损伤相关分子,同时还能分泌炎症因子激活并维持肝星状细胞的活化。既往研究发现,肝癌组织中富含组氨酸的钙结合蛋白(histidin-rich calcium binding protein,HRC)表达升高,促进肝
目的验证一种新型双特异性T细胞募集抗体Y150对CD38以及CD3的双靶向能力,以及其介导T细胞对多发性骨髓瘤(MM)细胞的杀伤能力,并探讨其相关的作用机制。方法(1)首先,在体外验证Y150的功能。在细胞水平上通过流式细胞术验证Y150的Fab端同时靶向CD38以及CD3的能力。将DARZALEX、MOR202 anolog和CD3isotype作为Y150的对照抗体,确定该抗体的作用机制。通过
镜像综合孔径微波辐射计是在天线阵旁增加反射板,结合镜像综合孔径亮温重建,以提高空间分辨率或减少天线数目。然而系统误差对镜像综合孔径微波辐射计的成像质量有较大影响。反射板误差是镜像综合孔径成像系统所独有的。因此,需要对反射板误差以及其对镜像综合孔径图像的影响进行分析。本文研究反射板误差及其对镜像综合孔径图像的影响。将反射板误差分为六种误差:反射率、位置、粗糙度、角度、长度、形变误差。重点分析了粗糙度
基础科学研究取得突破发展离不开精密测量技术的革新,高精度位移传感器是基础物理领域精密测量研究常见的工具之一。在结构复杂的狭小空间中,探头式光纤位移传感器凭借着小尺寸、高精度、非接触等优点受到了研究者的青睐,但高紧凑小型化的光纤位移传感器,通常会存在位移测量非线性误差大、测量范围小、调光难等问题,为了解决上述问题,我们开展了本论文的研究。本文首先提出了一种基于角锥反射镜和波长调制正交相位测量方法的光
快速刀具伺服(Fast Tool Servo,FTS)超精密车削技术在制造微纳米结构功能表面和自由曲面方面非常具有发展前途。本文以补偿超精密机床加工中Z轴运动平台惯性振动所触发的动态轮廓误差为主要目标,研制了一套高频高精的FTS装置,搭建实验系统提取惯性振动导致的误差,提出了对FTS装置进行超精密实时振幅控制来补偿动态轮廓误差从而提升加工表面质量的方法。本文的主要研究内容归结如下:(1)设计了一款
【目的】卵巢癌是死亡率最高的妇科恶性肿瘤,铂类耐药和缺乏有效药物选择是患者死亡的重要原因。溶瘤腺病毒作为一种强有效的抗肿瘤制剂发挥着重要的抗肿瘤效应,但溶瘤腺病毒对卵巢癌细胞的感染率低,且目前应用的方式主要是局部注射,难以对腹腔转移的卵巢癌产生治疗作用。本研究通过将溶瘤腺病毒与凝血因子X(FX)结合形成复合物,研究溶瘤腺病毒卵巢肿瘤的感染能力,以及研究腹腔注射溶瘤腺病毒对肝脏损伤的影响,探索出一种
随着对地观测技术的进步以及遥感成像技术的发展,现阶段可以获得大量高分辨率的遥感图像,这使得如何充分利用遥感图像进行智能对地观测这一问题变得尤为迫切。语义分割在遥感领域有很多应用,例如土地利用、建筑物提取、道路提取以及车辆检测等。遥感图像的语义分割任务可以基于不同地形地貌的高分辨率遥感影像资料去识别提取土地覆盖和利用类型。针对目前遥感图像语义分割任务中存在的一些挑战,本文做了以下研究工作:针对将De