基于深度学习的空间变分辨单光子压缩成像技术研究

来源 :南昌大学 | 被引量 : 0次 | 上传用户:jjJJ012689
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于压缩感知理论的单像素成像技术以其独特的成像方式受到广泛关注,已应用于生物医学成像、太赫兹成像和高光谱成像等多个领域。采用单光子探测器作为单像素相机中的探测器,可将经典的单像素相机扩展到单光子水平,实现单光子计数压缩成像,具有低成本和超高灵敏度的优势。但单像素成像速度非常慢,限制了其在实时场景的应用。研究获取最有效信息的采样方法以减少测量次数和优化重建算法实现快速图像重建是提高单像素成像速度的两条途径。围绕这两条途径,本文基于空间变分辨成像和深度学习方法对单光子压缩成像技术的优化展开研究,主要工作内容及成果如下:(1)提出了采样和重建联合优化的空间变分辨迭代收缩阈值网络。基于空间变分辨成像和神经网络中的全连接层的模型,以非均匀像素组合的方式设计了一类可训练的变分辨测量矩阵;设计了一种针对不同分辨采样区域的均方误差分别加权的差异化损失函数;将这种采样重建联合优化模型和迭代收缩阈值网络(ISTA-Net+)相结合,提出了SVR-ISTA-Net+。通过仿真实验验证了采样模型,损失函数和测量矩阵训练对于网络性能的影响。结果表明,本文提出的SVR-ISTA-Net+在相同的采样次数下相对于均匀采样可以大幅地提升图像中心区域的成像质量,且提升效果随采样率增长而增长,充分地利用了采样信息。(2)在单光子压缩成像系统上对SVR-ISTA-Net+进行了验证。将二值化神经网络的训练方法应用于网络的采样层,使得其可以训练得到用于单光子压缩成像系统的二值测量矩阵。对系统进行蒙特卡洛建模验证可行性并进行实际实验。结果表明,该网络在实际应用场景也能有效地提升图像中心区域的成像质量。(3)提出了卷积采样和重建联合优化的空间变分辨迭代收缩阈值网络。基于空间变分辨成像和神经网络中的卷积层的模型,设计了共享权重和不共享权重两类可训练的变分辨测量矩阵;针对不同分辨的采样区域提出一种非均匀随机步长设置方法;将这种变分辨卷积采样模型应用于SVR-ISTA-Net+。通过仿真实验验证了卷积采样和随机步长设置对于网络性能的影响。结果表明,本文提出的不共享权重的卷积采样模型能在保持对图像中心区域的高质量重建的同时大幅减少采样层参数数目,节省系统资源。
其他文献
网络化控制系统虽具有较高的灵活性,较低的成本以及资源共享等诸多优点,但同时因为网络的开放性很容易受到DoS攻击.目前对DoS攻击带来的负面影响进行积极补偿的研究并不是很多,所以基于不同类型的DoS攻击,实现对DoS攻击带来负面影响的积极补偿,具有重要的理论价值和实际应用价值.本文具体研究工作如下:针对网络化控制系统,首先,我们分别描述了周期性DoS攻击模型和时间约束型DoS攻击模型,并对时间约束型
随着城市规模扩大,公共区域内拥堵、踩踏等突发事件发生概率也随之增加。在多种群体性异常行为中,由摔倒引发的群体恐慌行为往往会引起极为严重的后续后果,除此之外摔倒本身的致死率也极其高。对此本文针对群体行为中重要的多人场景下的摔倒检测进行研究。现有基于计算机视觉的摔倒检测算法存在以下两个问题:问题一是多人复杂场景给摔倒检测造成干扰性大,导致实时性低。现有方法多针对单人简单场景下的摔倒检测,在含有多人的场
说话人识别也被称为声纹识别,是指利用人的特有的声音特性来判别说话人的身份,它作为有效的生物识别技术之一,被应用于实际生活中的众多领域。本文主要研究基于深度学习的说话人识别方法,分别从说话人模型的建立和特征提取两个方面对说话人识别系统进行了研究。论文主要工作如下:1.研究了基于CNN-TDNN混合模型的说话人识别方法。首先利用卷积神经网络(Convolutional Neural Network,C
随着城市的不断发展,其供水管网逐渐发展得庞大而复杂,使用传统人工经验调度的方式将不能精确得把控管网每一个节点的用水需求。如何在保证整个城市对水压、水量需求的前提下使供水费用达到最低是当下的热点研究课题。本文以节约供水费用为目的,以嘉兴市供水管网实际数据为基础,建立了嘉兴市时用水量预测模型、供水管网微观水力模型、两级优化调度模型,在保证整个城市用水需求的前提下降低了供水费用,本文的主要工作如下:用水
本文以机甲大师赛(Robo Master)的全自动哨兵机器人视觉系统为研究对象,在复杂环境和实时性要求下,对敌方步兵、工程、英雄等运动机器人的身份标识符在线识别并进行深度估计。本文主要工作内容有:1.在RGB颜色模型下分析身份标识符的颜色分布情况,修改RGB转YCr Cb颜色模型公式的系数,使用改进的YCr Cb颜色模型对图像进行预处理,凸显目标区域与背景区域之间的差异性。2.针对经典的一维最大熵
当前,大学生职业生涯规划课在高校基本上都有开设,生涯辅导与咨询也基本涵盖了各个学习阶段的大学生群体。本文主要从具体的生涯辅导个案出发结合相关的学习交流经验所得,尝试探讨高校生涯辅导老师在开展相应咨询工作中可能面临的一些困难以及应对之策。
自1960s以来,贵金属纳米材料被广泛应用于生物医学、临床诊断、食品安全以及环境监测等领域。其中金纳米粒子(Gold nanoparticles,Au NPs)因其制备工艺简单、易于生物标记和具有强吸收和强散射的光学性质等特性常被作为生物传感器的标记探针,但传统的胶体金免疫层析方法检测灵敏度偏低,无法满足微量目标物的检测需求。本研究采用微乳液法,以12 nm油胺化的金纳米粒子(Oleylamine
南昌市食用农产品电子化追溯平台是“南昌市食用农产品安全保障水平提升工程”的具体体现,在南昌深圳农产品市场中试点运行。市场从业人员在使用该平台时,需要人工的分辨识别果蔬品种以进行来货报备和交易。人工识别存在判断错误、输入错误、效率低下、消耗大量劳动力等问题,不利于平台的运行。因此,使用图像识别技术开发果蔬图像识别系统用于代替人工识别果蔬品种具有较大的意义和应用价值。本文所研究的内容是基于深度学习技术
基于压缩感知理论的单像素成像技术使用一个单点探测器即可实现二维成像。采用单光子探测器作为单像素相机中的探测器,可将经典的单像素相机扩展到单光子水平,实现了单光子计数压缩成像,与面阵单光子探测器实现的二维成像相比,具有低成本的优势。同时单像素成像系统中的探测器可以收集多个像素的光强,可实现所谓的超灵敏成像。因此单光子压缩成像在荧光成像、生物医学成像、深空探测等极弱光成像领域具有重要的应用。基于传统压