基于十进制移位编码的绝对式直线时栅位移传感器研究

来源 :重庆理工大学 | 被引量 : 0次 | 上传用户:lxy901123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着位移测量要求的不断增加,高精度、高效率、高集成度成为评价现代精密位移传感器的主要性能指标。绝对式位移传感器以绝对编码与解码原理为基础,将绝对位移值与编码序列相对应,通过识别编码信息实现绝对位移的测量。它在开机时能够立即获得当前绝对位移值,而不需要执行“回零”操作,提高了测量的效率和可靠性。虽然经过不断的发展,已经有多种编码方式,如格雷码、矩阵码以及伪随机码等,但是这些编码方式随着量程增大,编码的数据量相应地成倍数增加,导致相同空间内的编码数据位数迅速增加,使得编码复杂度迅速增大,给编码、译码算法以及加工制造带来困难。同时增量码道普遍采用光栅莫尔条纹的测量方法,其测量精度由等间距的栅距大小决定,通过精密刻线来提高测量精度,这也从客观上导致绝对式测量随着量程增大以及精度要求的提高,绝对编码算法及制造的难度越来越大。针对以上问题,本文提出一种基于时栅技术的简易十进制移位编码测量方法,利用光强调制的时栅测量方法,增大增量码道的栅距,用十进制移位编码和图像编码的方法,减少编码与译码的难度。这种编码方法利用时栅测量栅距大的优点,借助图像传感器的微米量级分辨能力,实现大量程的编码与译码,并且该编码方式的编码复杂度不随量程增加而增加。主要研究内容如下:(1)在总结目前广泛应用的绝对式位移传感器编码方式的基础上,提出了一种基于时栅技术的十进制移位编码方法。与传统的编码方式相比,它是一种通过图像识别的大量程绝对位置编码方式,在不增加编码位数和复杂度的条件下,实现大量程、高精度的绝对位置测量;并且采用简单数学公式的译码方式和十进制编码机制,提高了测量的效率和可靠性。(2)根据十进制移位编码的绝对式位移传感器测量原理,开展传感系统的整体设计。主要包括传感器结构模型、极板结构和测试系统,其中测试系统由图像采集模块、FPGA控制模块、信号处理等模块的硬件电路,以及模数转换、数据传输等软件模块组成。(3)根据传感系统的整体方案,搭建绝对式位移传感器的实验平台,开展传感器的实验研究。对测试系统的关键信号进行实验测试,开展传感器的原理性实验,验证传感器的理论正确性;对误差成分进行分析与消除,通过性能实验表明该方法能实现大量程、高精度的绝对位移测量。
其他文献
学位
学位
随着我国机动车保有量的不断增加,随之引发的汽车交通事故数量也在不断地攀升。自适应巡航系统作为汽车安全技术中重要的一环,在减少汽车交通事故方面起到了非常重要的作用。传感器作为汽车辅助驾驶系统的眼睛,可以说是整个汽车辅助驾驶系统中最为重要的部分,不同的传感器所能捕捉到的信息是不一样的。传统的自适应巡航系统采用的是毫米波雷达作为传感器,通常是针对一些直线行驶的特别典型路况设计的。所以为了解决复杂道路情况
随着时代的不断进步发展,传统的制造业正发生着巨大的变革。基于此,德国“工业4.0”和“中国制造2025”相继提出。如何更智能、更安全高效、更节约成本是制造业方向需要积极探索的领域。本文基于数字孪生理念构建了龙门机床的虚拟仿真系统,结合碰撞检测技术的研究,开发出了仿真加工、代码检测、碰撞检测等功能,为制造加工过程的优化进行了卓有成效的探索。本课题立足于前沿研究方向“数字孪生”,主要从仿真系统的数字孪
氧化锆陶瓷材料由于其优异的稳定性、生物相容性、耐高温耐腐蚀性以及良好的硬度和强度,在航空航天、汽车、生物医学、电子元件等生产领域应用广泛。但由于陶瓷材料脆性大、硬度高,复杂形状结构零件的加工成型非常困难。传统陶瓷加工技术依赖于模具制造,其生产周期长、制造成本高等因素,更加无法满足几何结构复杂、精度要求高的个性化陶瓷零件定制的要求。为了克服传统陶瓷制造中的难点,本研究工作采用晶粒度小于400 A的微
近年来,随着汽车“电动化、网联化、智能化、共享化”的逐步推进,自动驾驶汽车已成为汽车行业发展的一个重点方向。自动驾驶技术有助于提升道路交通安全并降低道路交通事故数量,但同时也给汽车主被动安全融合设计及车内乘员防护带来了新挑战。当前,适配自动驾驶汽车的新型乘员约束系统仍处于探索阶段,研究新型的约束系统来应对自动驾驶汽车带来的乘员碰撞防护的挑战具有重要的意义。本文旨在开展适配自动驾驶汽车的新型乘员约束
心音是血液在心血管内流动时,产生的各种机械振动之和,具有振幅、周期等特征要素。通常心音信号的振动频率在20Hz到800Hz之间,是我们人耳能够听到的范围之内。由于心音产生的机制,心音信号携带了大量的关于心血管健康情况的信息,在临床上,心音是用来评估心脏功能的主要信息来源。随着物联网,5G技术的诞生,移动医疗和智能医疗也相应的得到了快速发展,人们对数据的要求也逐渐提高,需要处理的数据量也逐渐增多,不
自驾游的兴起,给人们带来了很多生活上的乐趣,行李架的使用也给旅途带来了很多方便。但是方便的同时,因为它不完善的造型可能增加汽车的气动阻力以及气动噪声,这不仅会增加汽车的燃油消耗还会降低本身的舒适性。降低气动阻力和气动噪声已然成为提高汽车经济性和舒适性的重要环节。但行李架造型的改变对降低气动阻力与气动噪声的效果是不一致的,所以如何权衡这两者之间的关系变得至关重要。协同优化(Collaborative
由纳米磁性颗粒、基液和表面活性剂组成的磁流体,是一种独特的功能型材料,表面活性剂包裹着纳米数量级的磁性粒子,均匀的分布在基液中形成一种均匀稳定的胶体溶液。当处于磁场环境中,磁流体会被磁化,内部的纳米磁性颗粒会聚集到一起,从而改变其折射率。由于磁流体的独特光学特性,加之光纤传感器灵敏度高、耐腐蚀、尺寸小、重量轻、结构简单、不易受外界环境影响等特征,上述特征都是以前常用的测量磁场的仪器(如霍尔传感器、
现代化军事中,无人机广泛应用于执行高危任务,如战术侦察、电子干扰、精确打击等,从而降低消耗、避免人员伤亡。无人机的飞行需要操作员根据实际的地理环境和威胁因素等进行调节,精确的规划出飞行路径,确保任务的顺利完成。无人机的航迹规划是任务规划系统中的重要组成部分,也是任务规划中最关键的一环,是实现无人机安全自主飞行的技术保障。本文针对无人机在三维复杂环境下的航迹规划进行了研究,实现了无人机的三维路径规划