论文部分内容阅读
日冕物质抛射(CME)是太阳爆发的主要现象之一。磁裂爆(Magneticbreakout)是日冕物质抛射的主要触发机制之一。该机制的主要特征是存在发生于高日冕中的磁场重联,不断地减弱限制性磁拱数量,并最终导致内核爆发。最先由Antiochos等提出(Antiochos1998;Antiochos et al.1999),前人对磁裂爆模型做了一些理论模拟和间接的观测分析工作,但直接观测到磁裂爆现象,特别是有关日冕磁裂爆重联的事件极少。 在本论文中,我们介绍了论文作者参与研究的一例发生于2014年4月25日的磁裂爆太阳爆发临边事件的数据分析工作。该事件伴有一个日冕物质抛射和长时间演化的X级耀斑。通过成像观测并结合日冕X射线数据和微波数据,细致分析了这一爆发的形态、运动学及重联的演化过程。AIA/SDO观测显示在X形EUV结构两侧观测到一对具有cusp结构的热环;此外还发现:cusp状侧环的连续点亮现象、日冕硬X射线的能量达到100KeV、爆发后出现的大尺度延展的高日冕X射线源。这些观测从“新”的角度展现了磁裂爆事件的具体过程,对理解日冕物质抛射的触发机制提供了至关重要线索。此外,我们还简单分析了本例事件对应的HXR双源结构,并提出了关于此双源结构的新的物理解释。 在耀斑恢复相,通过较高温的131(A)和94(A)波段,我们在高日冕看到一大片辐射源,而在相对较低温的193(A)和304(A)没有此现象。通过NoRh微波成像分析、RHESSI数据与131(A)数据和DEM分析,我们得到该扩展日冕源有对应的微波源区,该扩展日冕源在空间位置上与下方的耀斑辐射源相互隔离,这是一般的耀斑事件中所不具备的特征。此外,耀斑恢复相中出现的微波辐射源的亮温度随时间不断增加,高达2.5*104 K。本文利用多种观测参数诊断了该扩展日冕源的物理参数,得到其温度在一千万度左右,EM约为1028cm-5,主要对应于热电子的轫致辐射。对RHESSI数据的谱拟合同样表明该源区热成分占主导,主要为热电子的轫致辐射。