室内空间定位装置的研究

来源 :西安理工大学 | 被引量 : 0次 | 上传用户:liongliong465
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着基础工业和制造业迅猛的发展,大尺寸工件的精密测量与定位是大型装配制造业的基础,是提高精度和效率,保证质量不可或缺的工艺保障手段。为解决在装配过程中大尺寸工件的精密测量与定位问题,某企业研发的一种高精密测量设备(iGPS),iGPS是一种基于GPS(Global Positioning System)定位思想开发的应用于大尺寸室内空间精密测量的非接触式三维测量装置。该装置具有高精度、高可靠性和高效率(支持多用户同时测量)等特点,为大尺寸室内空间柔性精密测量提供了一套高效的解决方案。由于iGPS装置在实际的工作过程中出现了较大的振动现象,严重地影响了 iGPS装置的测量精度。针对这一问题,本文对该装置进行了相关的研究,主要工作包括:建立了 iGPS装置的三维实体模型及有限元模型,对iGPS装置进行了有限元模态分析,获得其固有频率和振型;用振动试验验证有限元分析结果的正确性和准确性;由固有频率得到的iGPS装置的临界转速在其工作转速范围内,因此可以确定,共振是iGPS装置出现振动的一个重要原因;修改iGPS装置的结构,提高其固有频率,使临界转速避开工作转速范围。对iGPS装置的转子和定子之间所形成的空气流场进行了数值分析,得到了其空气流场的速度矢量和压力分布特性,基于获得速度矢量分布和压力分布特性发现,在iGPS装置某一转速时,其在等半径处的压力值相等,不会造成iGPS装置出现左右摆动的现象。因此,因此可以排除空气流场是造成iGPS装置振动的主要因素。根据iGPS装置的模态分析和流场分析最终确定,共振是引起iGPS装置振动影响测量精度的主要因素;在对iGPS装置结构改进的基础上,对iGPS装置的长套筒组件进行了尺寸优化设计,不仅提高了 iGPS装置的固有频率,保证其在工作转速范围内不发生共振,同时也降低了 iGPS装置的总质量,节约了成本。
其他文献
指尖密封作为一种可用于航空发动机气路和油路的新型动态密封装置,由于其柔性特征和低泄漏特质,使得其具有良好的应用前景,然而其磨损寿命和采用低摩擦材料设计时的高温热防护问题成为近年来关注的热点。为此,研究针对指尖密封的磨损机理和C/C复合材料指尖密封的热防护问题开展系统研究,对推进指尖密封的长寿命设计和高温应用价值提供研究参考。主要研究内容和结论如下:1)为分析指尖密封的磨损机理和构建其磨损计算模型,
镁合金是具有良好比强度、比刚度及低阻尼性的轻质金属材料,在航空航天、军工、交通、生物医学、电子产品等领域具有广阔的应用前景。但是,镁合金化学稳定性较差,在大气环境中易于与氧、水及氯盐等腐蚀介质发生反应而导致腐蚀损坏现象。在实际应用环境中,构件不可避免的会受到外加载荷的作用。而在外加载荷与腐蚀介质的共同作用下,镁合金极易发生应力腐蚀(Stress corrosion,简称SC)。应力腐蚀通常造成金属
热固性树脂基复合材料具有质轻、强度高、可设计性强和易整体成型等特点,被广泛应用于新能源、航空航天、医疗器械及汽车制造等领域。制备先进复合材料的工艺技术多种多样,但无论使用哪个成型工艺都会经历复合材料的固化过程,且该过程对成型件的性能起决定性作用。热固性树脂越复合材料固化时层合板内部出现“温度过冲”现象(树脂发生固化反应迅速放热并在层合板内部积累,导致层合板中间温度高,两边温度低)且存在温度梯度和固
轨道列车向着高速化、智能化不断发展,为了保证车辆在运行时的平稳性,轨道车辆越来越多的使用连挂纵向间隙更小的密接式车钩,但救援机车配备的几乎都是15号车钩,在车辆发生故障需要维修时,两种不同形式的车钩不能直接连挂,因此需要过渡车钩辅助连挂。某铁路局客车车辆段现有过渡车钩结构笨重,材料利用率较低,且在安装时需要人工装卸,在有砟轨道上使用时一旦发生脱落,将会对维修人员造成严重的人身伤害。本文以过渡车钩材
航天器已成为国防建设与国民经济发展不可或缺的一部分。如何提高航天器可靠性、安全性,降低失效事件发生的风险已成为国内外相关领域人员关注的热点。本文研究了航天器故障诊断、预测和健康管理(Diagnosis,Prognosis and Heath Management,DPHM)方法,具体研究内容如下:对于设备突变故障,设计了基于卡尔曼滤波的自适应观测器的诊断方法。该观测器能够对系统状态以及故障参数进行
本文主要探索了光悬浮区熔(OFZ)法制备Al2O3/SmAlO3(Al2O3/SAP)共晶陶瓷的制备工艺,通过改变预制体的长度、形状和厚度等参数,调节籽晶安装方式、抽拉速率和旋转速率等参数,成功制备了定向凝固Al2O3/SAP共晶陶瓷。研究了定向凝固Al2O3/SAP共晶陶瓷的组织结构,成分组成,择优取向和界面关系;测试了定向凝固Al2O3/SAP共晶陶瓷的各项力学性能,尤其评估了其抗热震性能。研
TiC和TiB高的强度和刚度,与钛基体接近的热膨胀系数以及良好的界面结合效果,使得TiC和TiB增强的钛基复合材料具有良好的耐磨性,因此TiC和TiB被认为是钛基体最为理想的强化相。目前,基于Ti-B4C体系的原位反应制备高强度(TiCp+TiBw)/Ti复合材料是高强韧性钛材料研究领域的重要方法之一,并取得了良好的强化效果。然而,对于(TiCp+TiBw)/Ti复合材料的强韧化机制,特别是TiC
功能梯度材料(Functionally Gradient Material,简称FGM),是在计算机辅助设计基础上,结合新的材料设计理念,设计出的内部化学构成和原子排列呈梯度变化的特殊复合材料。功能梯度材料的独特构成使之具有高强度、高耐磨性和耐高温等性能,在航天航空、生物工程、核工业等多种领域广泛应用。目前,研究人员将快速成型制造原理应用于FGM的制备,这类方法成型的FGM零件中有机物含量较高,后
桥梁结构在交通、社会经济和军事中具有十分重要的地位和作用。国内外因危险化学品运输车辆发生爆炸导致桥梁结构严重破坏的事故频发,桥梁在受到爆炸破坏时体现出来的脆弱性不可忽视,爆炸荷载作用下桥梁结构的动态响应及破坏机理亟待研究。基于ANSYS/LS-DYNA显式动力学有限元分析软件,以预应力混凝土简支小箱梁结构为研究对象,对其开展了爆炸荷载作用下的动态响应及破坏机理研究,主要研究工作及结论如下:(1)采
随着城市建设的快速发展,经济的迅速提升,城市人口的不断膨胀,出行压力不断增加,城市地铁的规模也在不断扩建。虽然城市地铁能够提供高速、便捷的出行方式,但是由于地铁运营时间不断增加和客流量不断扩大,地铁的运营风险也在不断扩大,使得地铁抗毁性失效越来越多,地铁安全运营受到了威胁。本文通过IE的理论方法对西安枢纽站点的抗毁性进行研究。首先,在定义了地铁抗毁性的基础上,根据对西安枢纽站点的问卷调查,借助SP