[!--title--]

来源 :电子科技大学 | 被引量 : [!--cite_num--]次 | 上传用户:[!--user--]
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
[!--newstext--]
其他文献
毫米波(Millimeter Wave,mmWave)频段频谱资源丰富、指向性强,可实现点对点的高速数据传输,故其被选为5G标准以显著提升系统容量。然而,mmWave路径损耗严重并且穿透能力差,这极大地制约了其实际应用。为了弥补mmWave的这些缺陷,催生出了多种mmWave传输辅助技术,最近发展起来的可重构智能表面(Reconfigurable Intelligent Surface,RIS)技
表面等离子体激元(SPPs)是外部电磁场与良导体材料中的自由电子的集体震荡相互耦合产生的一种激发态表面倏逝波,具有亚波长局域,表面场增强等特性。作为能产生SPPs的天然材料,金属最早出现在研究中,至今已有百余年历史。而金属产生的SPPs的作用范围在纳米量级,早期的加工技术无法使其投入实际应用。近年来,由于微纳加工技术的发展,SPPs再次成为研究的热点,被广泛运用于近场成像、化学生物传感、表面拉曼散
随着物联网的发展,传感器网络作为其感知世界的基础而将广泛存在,使电能供给面临挑战。基于电池的传统供电方式将给传感器网络的维护带来极大的时间和人力成本,从而难以适应未来的发展需求。随着传感器和无线通信的功耗降低,以及现代社会对射频技术的日益依赖,利用无线射频能量供电成为了一种具有前景的替代方案,整流天线作为其中的关键器件引起了国内外学者的关注。然而,目前存在两方面因素制约着无线能量采集的效率。一方面
随着未来移动通信需求的发展、高速率通信场景的增加,以及低频段资源的短缺,毫米波通信技术,由于其具有更多的频谱资源,更大通信带宽,并且能够有效的利用空间域的资源,越来越受到学术界和工业界的重视。因此,毫米波通信技术也成为了5G通信的重要技术之一。本论文从毫米波通信中实际存在的问题出发,首先研究了毫米波通信的信道特性、通过实际测量和大量经典文献的整理,基于前期研究的毫米波信道特性成果,使用不同的毫米波
无线网络技术正迈向与多领域的深度融合,逐步实现无时无处的智能连接、全息连接、深度连接与泛在连接。然而,由于无线网络的广播性及开放性,使得无线网络极易受到窃听以及干扰等恶意攻击。同时,微型无线终端设备的普及,使得这些微型终端的计算和能量都非常有限,基于传统的安全解决方案难以适用于无线网络的低功耗、低计算资源以及高吞吐率下的高安全需求。无线物理层安全技术的提出为解决这些安全问题提供了新的思路。物理层安
近年来人类社会所产生的海量数据使得人工智能技术为制造业产能升级提供了强有力的支持。但与此同时,传统计算机的计算能力与存储性能也逐渐步入瓶颈,核心处理器的电路集成度越来越大,且因不可控制的量子效应导致计算失效。为了克服传统计算机目前的缺陷,在存储和计算等关键领域上重新思考并发明全新的颠覆性技术成为计算机研究领域的热点研究课题。近年来,利用量子力学规律所设计的量子计算机相比经典计算机具有更强大的存储与
近年来,大规模云计算系统不断成为大数据、物联网、人工智能等应用的重要支撑平台,随着其规模和复杂性的急剧增加,各种硬件和软件故障质变为常态现象,多类型的故障需要及时发现和修复。同时,复杂性不断增加的云计算系统架构对可靠性带来的影响不断凸显(如评估困难、运维低效等),并受到学术界和产业界的广泛关注。如何量化复杂的云计算系统可靠性特征并加以保障和有效提升已经成为了制约云计算产业持续发展的关键问题。在现有
光学相干层析成像技术因具有高分辨,非入侵和实时成像的特点,被广泛应用于各种基础研究和临床医学中。但光在通过无序的生物组织时,由于折射率不均匀而发生的多次散射,限制了OCT的成像深度为1~2 mm。近些年来,随着使用空间光调制器优化入射光的波前、样品反射/传输矩阵测量和时间反演等技术的出现,人们提出了很多新型的穿透散射介质成像和聚焦的技术,这其中就包括反馈式的波前整形、光学反射/传输矩阵的测量、光学
与常规相控阵(Phased Array,PA)仅有方位角依赖性的发射波束不同,频控阵(Frequency Diverse Array,FDA)雷达通过对各阵元载频依次施加不同的频率偏移形成具有方位角、距离甚至时间依赖特性的发射波束。因此,频控阵雷达在发射波束形成、杂波和干扰抑制、目标检测与跟踪、参数估计和射频隐身等领域具有广泛的应用前景。本文从频控阵雷达阵列结构和信号的基本特性出发,对其目标检测涉