论文部分内容阅读
随着汽车品质的提升,汽车车内噪声成为用户评价汽车乘坐舒适性的重要指标。目前,随着汽车振动噪声技术的发展,发动机和传动系统噪声已经得到有效控制,汽车行驶时轮胎与路面相互作用产生的噪声(以下简称“路噪”)在整车噪声的影响程度在扩大,降低车内路噪,是汽车行业发展的重要趋势。路噪主要是低频率宽频带的随机噪声,目前主流的被动降噪技术,如吸声、隔声等,难以对其进行抑制,因此能有效降低低频噪声的噪声主动控制技术引发了广大汽车科技工作者的关注。同时,为了满足车内多个位置的降噪需求就需要研究噪声的多通道主动控制技术。本文通过研究噪声多通道主动控制技术的基本原理、系统结构和算法实现,并对车内路噪的噪声特性进行分析,结合现有的车内路噪主动控制方法提出了一种新的基于神经网络技术的车内路噪多通道主动控制策略:采用对时间序列信号具有较好辨识能力的神经网络方法,经过离线训练后通过悬架和车身连接点的振动加速度信号对车内路噪信号进行辨识,然后利用多通道噪声主动控制算法对车内路噪进行主动降噪,并围绕提出的控制策略,主要完成了以下研究工作:首先,通过比较各类算法特点后确定了车内多通道噪声主动控制系统的控制方案,采用基于随机梯度的LMS算法及多通道FxLMS算法分别完成多通道噪声主动控制系统的次级声通道辨识和主动降噪。其次,基于试验采集的汽车匀速行驶工况下悬架和车身连接点的振动加速度信号以及车内驾驶员与后排乘员耳旁噪声信号进行了低频特性与多重相关性分析,建立了车内路噪辨识的Elman神经网络模型。然后,建立了多通道噪声主动控制系统模型,并将其与多参考LMS算法合成车内路噪模型和Elman神经网络车内路噪辨识模型分别整合,搭建了现有的车内路噪主动控制模型与基于神经网络的车内路噪多通道主动控制模型,对比验证提出的车内路噪多通道主动控制策略的有效性和可行性。基于试验采集的振动与噪声数据分别对两组模型进行了仿真分析。结果表明,在路噪频率范围内,两组模型均取得了良好的降噪效果,可以实现多点的同时降噪。现有的车内路噪主动控制模型降噪量主要分布在10dB以内,峰值的降噪量可以达到约20dB。基于神经网络辨识的车内路噪主动控制系统降噪效果不逊于现有的车内路噪多通道主动控制策略,甚至在0-50Hz范围内的峰值噪声降噪效果更佳,可以达到约25dB。最后,基于所建立的车内路噪多通道主动控制Simulink模型及其控制策略,搭建车内路噪多通道主动控制系统的硬件在环仿真平台,并以实车试验采集的数据为基础对所建系统进行硬件在环仿真试验,结果表明基于神经网络的车内路噪多通道主动控制系统在20-100Hz频率范围内具有较好的降噪效果,并且可以实现多点的同时降噪,降噪量主要分布在2-8dB,噪声峰值处的降噪效果更佳。