论文部分内容阅读
摘要 为了提高马尾松毛虫Dendrolimus punctatus Walker灾情预报结果的准确性,为提高防治效果提供科学依据, 本文采用方差分析周期外推预报法,以安徽省潜山县的马尾松毛虫各代幼虫累计发生量和当代发生面积计算求得的灾情指数为依据,进行方差分析周期外推预报,并对预报结果进行验证。预报结果的历史符合率,1989-2016年全年灾情指数预报结果历史符合率为89.29%;预报2017年的结果与实况一致。1989-2016年的越冬代历史符合率为89.29%,2017年预报值与实际完全一致。1997-2016年的一代预报结果历史符合率为100%。1989-2016年的二代预报结果的历史符合率为85.19%。2017年由于越冬代飞防使用灭幼脲,使当年一、二代蟲口大幅度降低,预报值高于实况。方差分析周期外推预报法对马尾松毛虫的灾情指数预报是一种较理想的预报方法。
关键词 马尾松毛虫幼虫; 灾情指数; 方差分析周期外推预报
中图分类号: S 431.2
文献标识码: ADOI: 10.16688/j.zwbh.2018328
Abstract In order to improve the accuracy of disaster forecast of Dendrolimus punctatus, and provide scientific basis for improving the control efficacy, the periodic extrapolation prediction method of variance analysis was performed on the basis of the damage index calculated by the cumulative amount of larvae and the area of occurrence in each generation of D.punctatus in Qianshan county, Anhui province, and the prediction results were verified. The historical conformity rate of the annual disaster index forecast results was 89.29% for 1989-2016, and the forecasts for 2017 were in line with the actual data. The historical conformity rates of the overwintering and 2nd generations were 89.29% and 85.19% for 1989-2016, respectively, and the forecasts were in line with the actual data for 2017, while the historical conformity rate of the 1st generation was 100% in 1997-2016. In 2017, due to the application of chlorbenzuron by aerial spraying, the 1st and 2nd generations were greatly reduced and the forecast value was higher than the actual value. The method of variance analysis and periodic extrapolation is an ideal method for predicting the occurrence of D.punctatus.
Key words Dendrolimus punctatus larvae; damage index; analysis of variance periodic extrapolation prediction
马尾松毛虫Dendrolimus punctatus Walker分布于皖、豫、川、黔、陕、滇、赣、苏、湘、浙、闽、粤、琼、桂和台湾等省,主要为害马尾松Pinus massoniana Lamb.,还为害黑松P.thunbergii Parl.、火炬松P.taeda Linn.、湿地松 P.elliottii Engelm.、晚松P.rigida var. serotina (Michxa) Loud ex Hoopes、海南松P.fenzeliana Hand.Mazz.等松属植物。20世纪中叶马尾松毛虫是我国发生最广、危害面积最大,经常猖獗成灾的森林害虫。该虫不但影响林业生产,还危害人体健康[14]。进入21世纪,森林管理上采用了封山育林、混交、间作等措施,优化了森林生态系统,增加了物种多样性以及科学地运用综合治理措施,使马尾松毛虫的危害得到有效控制,但该虫具有巨大的繁殖潜能,遇到有利条件极易暴发成灾,对其监测丝毫不能放松。
马尾松毛虫一年发生2~4代,发生世代的多少随不同地区而异。马尾松毛虫发生的预测预报是对其进行综合防治的基本工作;森林保护工作者分别采用不同的预测方法预测马尾松毛虫的发生量、虫害等级以及发生类别、发生空间格局,为马尾松毛虫的综合防治工作提供了有力支持[515]。由于各地气象条件、植被条件和地形地貌的差异,马尾松毛虫的发生特点也不完全相同。对安徽省潜山县马尾松毛虫1983-2016年的各世代幼虫为害的灾情指数鲜见有具体的系统研究报道,本研究采用方差分析周期外推预报法预报马尾松毛虫幼虫为害的灾情指数,以期为马尾松毛虫的综合治理提供科学依据。 [10]田万银,徐华潮.浙江沿海防护林马尾松毛虫的预测预报模型[J].环境昆虫学报,2012,34(4):401406.
[11]费海泽,王鸿斌,孔祥波等.马尾松毛虫发生相关气象因子筛选及预测[J].东北林业大学学报,2014,41(1):136140.
[12]许章华,李聪慧,刘健.马尾松毛虫害等级的Fisher判别分析[J].农业机械学报,2014,45(6):275283.
[13]王庆,毕猛,杜婷.基于气象因子的马尾松毛虫发生率空间格局研究[J].林业科学研究,2016,29(2):256260.
[14]余燕,李尚,王振兴,等.马尾松毛虫幼虫发生严重程度的预测研究[J].安徽农业大学学报,2017,44(5):882893.
[15]周夏芝,王振兴,余燕,等.马尾松毛虫幼虫高峰期发生量的预测模型研究[J].应用昆虫学报,2017,54(6):10311043.
[16]国家林业局森林病虫害防治总站.林业有害生物监测预报技术[J].北京:中国林业出版社,2013:117118.
[17]张孝羲,翟保平,牟极元,等.昆虫生态及预测预报[M].第3版.北京:中国农业出版社,2002:262265.
[18]吴劲松.用方差分析周期及随机时间序列法作赫章6-8月总降雨量预报[J].贵州气象,1999,23(1):1314.
[19]张梅,陈玉光,杨冰.方差分析周期叠加法预测农作物生长季积温[J].现代农业科技,2017(21):237240.
[20]杨长登.用方差分析周期叠加外推法预报年降水量[J].贵州气象,1998,22(1):2325.
[21]康晓慧,陈浩,张梅.3种时间序列分析模型在水稻稻瘟病预测中的应用[J].西北农林科技大学学报(自然科学版),2011,39(6):173184.
[22]KWON J H. Crystal graphs and the combinatorics of young tableaux [M]. Handbook of Algebra. Vol 6, NorthHolland, New York, 2009: 473504.
[23]武汉中心气象台,武汉大学数学系.方差分析周期外推法在長期预报中的应用[J].数学学报,1974,17(3):156163.
(责任编辑:田 喆)
关键词 马尾松毛虫幼虫; 灾情指数; 方差分析周期外推预报
中图分类号: S 431.2
文献标识码: ADOI: 10.16688/j.zwbh.2018328
Abstract In order to improve the accuracy of disaster forecast of Dendrolimus punctatus, and provide scientific basis for improving the control efficacy, the periodic extrapolation prediction method of variance analysis was performed on the basis of the damage index calculated by the cumulative amount of larvae and the area of occurrence in each generation of D.punctatus in Qianshan county, Anhui province, and the prediction results were verified. The historical conformity rate of the annual disaster index forecast results was 89.29% for 1989-2016, and the forecasts for 2017 were in line with the actual data. The historical conformity rates of the overwintering and 2nd generations were 89.29% and 85.19% for 1989-2016, respectively, and the forecasts were in line with the actual data for 2017, while the historical conformity rate of the 1st generation was 100% in 1997-2016. In 2017, due to the application of chlorbenzuron by aerial spraying, the 1st and 2nd generations were greatly reduced and the forecast value was higher than the actual value. The method of variance analysis and periodic extrapolation is an ideal method for predicting the occurrence of D.punctatus.
Key words Dendrolimus punctatus larvae; damage index; analysis of variance periodic extrapolation prediction
马尾松毛虫Dendrolimus punctatus Walker分布于皖、豫、川、黔、陕、滇、赣、苏、湘、浙、闽、粤、琼、桂和台湾等省,主要为害马尾松Pinus massoniana Lamb.,还为害黑松P.thunbergii Parl.、火炬松P.taeda Linn.、湿地松 P.elliottii Engelm.、晚松P.rigida var. serotina (Michxa) Loud ex Hoopes、海南松P.fenzeliana Hand.Mazz.等松属植物。20世纪中叶马尾松毛虫是我国发生最广、危害面积最大,经常猖獗成灾的森林害虫。该虫不但影响林业生产,还危害人体健康[14]。进入21世纪,森林管理上采用了封山育林、混交、间作等措施,优化了森林生态系统,增加了物种多样性以及科学地运用综合治理措施,使马尾松毛虫的危害得到有效控制,但该虫具有巨大的繁殖潜能,遇到有利条件极易暴发成灾,对其监测丝毫不能放松。
马尾松毛虫一年发生2~4代,发生世代的多少随不同地区而异。马尾松毛虫发生的预测预报是对其进行综合防治的基本工作;森林保护工作者分别采用不同的预测方法预测马尾松毛虫的发生量、虫害等级以及发生类别、发生空间格局,为马尾松毛虫的综合防治工作提供了有力支持[515]。由于各地气象条件、植被条件和地形地貌的差异,马尾松毛虫的发生特点也不完全相同。对安徽省潜山县马尾松毛虫1983-2016年的各世代幼虫为害的灾情指数鲜见有具体的系统研究报道,本研究采用方差分析周期外推预报法预报马尾松毛虫幼虫为害的灾情指数,以期为马尾松毛虫的综合治理提供科学依据。 [10]田万银,徐华潮.浙江沿海防护林马尾松毛虫的预测预报模型[J].环境昆虫学报,2012,34(4):401406.
[11]费海泽,王鸿斌,孔祥波等.马尾松毛虫发生相关气象因子筛选及预测[J].东北林业大学学报,2014,41(1):136140.
[12]许章华,李聪慧,刘健.马尾松毛虫害等级的Fisher判别分析[J].农业机械学报,2014,45(6):275283.
[13]王庆,毕猛,杜婷.基于气象因子的马尾松毛虫发生率空间格局研究[J].林业科学研究,2016,29(2):256260.
[14]余燕,李尚,王振兴,等.马尾松毛虫幼虫发生严重程度的预测研究[J].安徽农业大学学报,2017,44(5):882893.
[15]周夏芝,王振兴,余燕,等.马尾松毛虫幼虫高峰期发生量的预测模型研究[J].应用昆虫学报,2017,54(6):10311043.
[16]国家林业局森林病虫害防治总站.林业有害生物监测预报技术[J].北京:中国林业出版社,2013:117118.
[17]张孝羲,翟保平,牟极元,等.昆虫生态及预测预报[M].第3版.北京:中国农业出版社,2002:262265.
[18]吴劲松.用方差分析周期及随机时间序列法作赫章6-8月总降雨量预报[J].贵州气象,1999,23(1):1314.
[19]张梅,陈玉光,杨冰.方差分析周期叠加法预测农作物生长季积温[J].现代农业科技,2017(21):237240.
[20]杨长登.用方差分析周期叠加外推法预报年降水量[J].贵州气象,1998,22(1):2325.
[21]康晓慧,陈浩,张梅.3种时间序列分析模型在水稻稻瘟病预测中的应用[J].西北农林科技大学学报(自然科学版),2011,39(6):173184.
[22]KWON J H. Crystal graphs and the combinatorics of young tableaux [M]. Handbook of Algebra. Vol 6, NorthHolland, New York, 2009: 473504.
[23]武汉中心气象台,武汉大学数学系.方差分析周期外推法在長期预报中的应用[J].数学学报,1974,17(3):156163.
(责任编辑:田 喆)