论文部分内容阅读
以卷积神经网络(Convolutional Neural Network,CNN)为代表的深度学习方法因具有强大的特征学习能力已被广泛应用于计算机视觉、自然语言处理等领域,但在土壤高光谱遥感领域研究较少。为探究其在小样本数据集下,通过高光谱数据估算土壤有机质(SoilOrganicMatter,SOM)的可行性,以江西省奉新县北部为研究区,248个红壤样本为研究对象。对比分析深度学习方法 CNN、多层感知器(Multilayer Perceptron,MLP)、常用的机器学习方法随机森林(Rando