论文部分内容阅读
复杂网络中普遍存在着一定的社团结构,社团检测具有重要的理论意义和实际价值。为了提高复杂网络中社团检测的性能,提出了一种基于结构相似度仿射传播的社团检测算法。首先,选取结构相似度作为节点之间的相似性度量,并采用了一种优化的方法来计算复杂网络的相似度矩阵;其次,将计算得到的相似度矩阵作为输入,采用快速仿射传播(FAP)算法进行聚类;最后,得到最终的社团结构。实验结果表明,所提算法在LFR(LancichinettiFortunato-Radicchi)模拟网络上的社团检测平均标准化互信息(NMI)值为6