一类具有延迟中立型微分方程的渐近概自守温和解

来源 :哈尔滨理工大学学报 | 被引量 : 0次 | 上传用户:kanoabin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘 要:各类微分方程是基于不同实际问题而建立的数学模型,研究方程的各种解的存在问题引起了国内外数学学者的关注。利用Banach压缩映射原理、概自守型函数的有关理论以及卷积族的指数二分性,针对一类具有延迟的中立型微分方程的渐近概自守温和解的存在唯一性问题进行研究。渐近概自守温和解比概自守温和解更具有一般性,因此本文所研究问题会使这类方程的应用范围更加广泛。
  关键词:渐近概自守温和解;中立型微分方程;Banach压缩映射原理
  DOI:10.15938/j.jhust.2021.04.021
  中图分类号:O177.92
  文献标志码:A
  文章编号:1007-2683(2021)04-0153-06
  Abstract:All kinds of differential equations as mathematical models have been built up due to different practical problems, so the problem of studying the existence of various solutions has attracted the attention of  mathematical scholars at home and abroad. The problem on the existence and uniqueness of asymptotically almost automorphic mild solutions for a class of neutral differential equations with delay are researched by using Banach compression mapping principle, related theorems of almost automorphic type functions and the exponential dichotomy of convolution family in this paper. Asymptotically almost automorphic mild solutions are more general than almost automorphic mild solutions, so the research of this paper will make the scope of application on this kind of differential equations more extensive.
  Keywords:asymptotically almost automorphic mild solutions; neutral differential equations; Banach compression mapping principle
  0 引 言
  微分方程是多學科研究领域常用的工具,如数学、物理学、化学、生物学等。其中,要研究的多数问题都可以转化为探讨微分方程的各类解的存在性问题。目前为止已有大量文献对各类微分方程的概周期型解[1-6],概自守温和解[7-11]、以及伪概自守温和解[12-15]进行了研究。
  3 结 论
  本文利用Banach压缩映射原理、卷积族的指数二分性及概自守型函数的有关性质证明了一类具有延迟的中立型微分方程在适当的条件下存在唯一的渐近概自守温和解。
  参 考 文 献:
  [1] MYSLO Y M, TKACHENKO V I. Asymptotically Almost Periodic Solutions of Equations with Delays and Nonfixed Times of Pulse Action[J]. Journal of Mathematical Sciences, 2018, 228(3):290.
  [2] SLYUSARCHUK V Y. Almost Periodic Solutions of Functional Equations[J]. Journal of Mathematical Sciences, 2017,222(3):359.
  [3] YU YUEHUA, GONG SHUHUA. Pseudo Almost Periodic Solutions for First-Order Neutral Differential Equations[J]. Advances in Difference Equations, 2018, 2018(1):1.
  [4] DIAGANA T, HERNANDEZ E, RABELLO M. Pseudo Almost Periodic Solutions to Some Nonautomous Neutral Functional Differential Equations with UnboundedDelay[J]. Mathematical and Computer Modelling. 2007, 45(9/10):1241.
  [5] ZHAO Z H, CHANG Y K, LI W S. Asymptotically Almost Periodic, Almost Periodic and Pseudo-Almost Periodic Mild Solutions for Neutral Differential Equations[J]. Nonlinear Analysis:Real World Applications, 2010, 11(4):3037.   [6] 姚慧丽,孙海彤,卜宪江.一类可变延迟细胞神经网络的渐近概周期解[J]. 哈尔滨理工大学学报, 2017, 22(5):130.
  YAO HUILI, SUN HAITONG, BU XIANJIANG. Asymptotically Almost Periodic Solutions for a Class of Cellular Neural Networks with Varying Delays[J]. Journal of Harbin University of Science and Technology, 2017, 22(5):130.
  [7] REVATHIP, SAKTHI VEL R, REN Y, et al. Existence of Almost Automorphic Mild Solution to Nonautonomous Neutral Stochastic Differential Equation[J]. Applied Mathematics and Computation, 2014,230:639.
  [8] DIAGANA T, HERNAN R. HENRIQUEZ, EDUARDO M. HERNANDEZ. Almost Automorphic Mild Solutions t Some Partial Neutral Functional-Differential Equations and Applications[J]. Nonlinear Analysis Theory Methods & Applications, 2008, 69(5-6):1485.
  [9] MISHRA, BAHUGUNA, ABBAS. Existence of Almost Automorphic Solutions of Neutral Functional Differentia Equation[J]. Nonlinear Dynamics & Systems Theory, 2011, 2011(2):165.
  [10]BOULITE S,MANIAR L., NGURKATA G M.Almost automorphic solutions for hyperbolic semilinear evolution equations[J]. Semigroup Forum,2005,71:231.
  [11]GISELE M M, GASTON M N. Almost Automorphic Solutions of Neutral Functional Differential Equations[J]. Electronic Journal of Differential Equation, 2010, 69:1.
  [12]GU Y, REN Y, SAKTHIVEL R. Square-Mean Pseudo Almost Automorphic Mild Solutions for Stochastic Evolution Equations Driven By Brownian Motion[J]. Stochastic Analysis and Applications, 2016, 34(3):528.
  [13]XIAO T J, ZHU X X, LIANG J. Pseudo-Almost Autonomorphic Mild Solutions to Nonautonomous Differential Equations and Applications[J]. Nonlinear Analysis Theory Methods & Applications, 2008, 70(11):4079.
  [14]CHANG Y K, FENG T W. Properties on Measure Pseudo Almost Automorphic Functions and Applications to Fractional Differential Equations in Banach Space[J]. Electronic Journal of Differential Equations, 2018, 2018(47):1.
  [15]CHANG Y K, ZHENG S. Weighted Pseudo Almost Automorphic Solutions to Functional Differential Equations with Infinite Delay[J]. Electronic Journal of Differential Equations, 2016, 2016(286):1.
  [16]BOCHNER S. A New Approach to Almost Periodicity[J]. Proc. Nat. Acad. Sci.U. S. A, 1962, 48:2039.
  [17]N′GUEREKATA, GASTON MANDATA. Some Remarks on Asymptotically Almost Automorphic Function[J]. Rivista Di Matematica Della Università Di Parma, 1988, 13(4):301.
  [18]GISELE M M,GASTON M N. Almost Automorphic Solutions of Neutral Functional Differential Equations[J]. Electronic Journal of Differential Equation, 2010,69:1.
  [19]YAGII A.Abstract Quasilinear Evolution Equations of Parabolic Type in Banachspaces[J]. Boll.Un. Mat. Ital.B,1991,7(5):341.
  [20]CHICONE C,LATUSHKIN Y.Evolution semigroups in dynamical systems and differential equations[J].Amer.Math.Soc., 1999,40:65.
  [21]LIANG J, ZHANG JUN,XIAO T-J. Composition of Pseudo Almost Automorphic and Asymptotically Almost Autoorphic Functions[J]. Math.Anal.Appl, 2008,340(2):1493.
  [22]DING H-S,NGURKATA G M,LONG W.Almost Automorphic Solutions of Nonautonomous Evolution Equations[J]. Nonlinear Analysis, 2009, 70(12):4158.
  (編辑:温泽宇)
其他文献
摘 要:研究了基于偏迎风数值通量的四阶线性偏微分方程局部间断Galerkin方法的稳定性和误差估计问题。考虑在空间方向上,利用半离散形式的数值格式,通过使用广义Gauss-Radau投影,消除了数值通量产生的投影误差,利用Young不等式得到数值格式的最优误差估计。证明了当对流项选择偏迎风数值通量,方法的收敛阶为k+1阶。由于含有高阶空间导数的偏微分方程LDG方法的空间离散算子具有刚性,因此对于时
摘 要:针对人工设计的中低层特征难以对LiDAR数据进行高精度分类以及泛化性能较低等问题,提出了一种基于集成卷积神经网络的LiDAR数据分类方法。它是基于深度学习模型与随机子空间的集成学习框架。通过有放回的随机抽取LiDAR训练集构成子集,以深度卷积神经网络模型为单个子分类器,最后采用多数投票法确定最终样本的类别,以获得更好的分类精度。实验结果表明,所提方法在Bayview Park和Housto
摘 要:多数自然振动为平稳信号,且受光纤分布式振动传感系统的干涉光信号调制。作为事件识别关键参量之一的幅值信息无法采用传统信号分析方法准确获得。本文基于分数阶傅里叶变换在统一的幅、时、频域内更准确地提取Phase-sensitive optical time domain reflectometry(Ф-OTDR)信号的幅值信息。在分析Ф-OTDR非平稳信号形成原因的基础上,进一步讨论分数阶傅里叶