论文部分内容阅读
为实现滚动轴承故障的精确诊断,提出一种基于集成经验模态分解与粒子群算法优化的支持向量机的故障诊断方法。利用EEMD方法分解振动信号,依据经验选取合适的内禀模态函数进行能量值及包络谱特征幅值比等故障特征参量的计算,构建滚动轴承故障特征向量,然后基于少量不同故障部位及故障程度的样本,利用粒子群算法对支持向量机进行参数优化,进而训练样本并建立故障模型,最后对测试样本进行故障诊断,观察该方法的诊断效果。实验表明,该方法可对多种不同故障状态进行诊断,且分类精度高,证明了振动分析与智能算法结合的方法可有效实现滚动轴承