EM-GMPF:一种基于EM的混合高斯粒子滤波器算法

来源 :计算机研究与发展 | 被引量 : 0次 | 上传用户:zyff1985
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
粒子滤波器算法是一种基于贝叶斯推理和蒙特卡罗方法的非线性、非高斯动态系统的实时推理算法.因其具有灵活、易于实现、并行化等特点,成为统计学、信号处理、人工智能等领域新的研究热点,并被广泛地应用于目标跟踪等领域中.粒子滤波器算法中存在的主要问题是再取样步骤带来的粒子枯竭,从粒子滤波器的表示方法角度出发,提出了一种基于EM的混合高斯粒子滤波器算法,仿真数据和可视化跟踪实验表明,与传统的粒子滤波器算法和基于单高斯模型的粒子滤波器算法相比,该方法在降低对粒子数目需求的同时显著提高了粒子滤波器的估计性能.
其他文献
当今社会正在进入被称为知识经济、互联网或网络经济、经济全球化、新经济的时代.对当今时代的多种表述反映了从不同视角对时代本质特征的认识和概括:知识经济为内涵视角,互