论文部分内容阅读
粒子滤波器算法是一种基于贝叶斯推理和蒙特卡罗方法的非线性、非高斯动态系统的实时推理算法.因其具有灵活、易于实现、并行化等特点,成为统计学、信号处理、人工智能等领域新的研究热点,并被广泛地应用于目标跟踪等领域中.粒子滤波器算法中存在的主要问题是再取样步骤带来的粒子枯竭,从粒子滤波器的表示方法角度出发,提出了一种基于EM的混合高斯粒子滤波器算法,仿真数据和可视化跟踪实验表明,与传统的粒子滤波器算法和基于单高斯模型的粒子滤波器算法相比,该方法在降低对粒子数目需求的同时显著提高了粒子滤波器的估计性能.