论文部分内容阅读
微博文本的数据稀疏特性,使传统话题跟踪技术只能捕获部分话题微博且准确度不高。同时,在追踪过程中,话题会出现漂移现象。针对以上两个问题,提出一种基于层叠条件随机场的微博热点话题跟踪方法。该方法先通过标识模型标识出可能相关的微博,源热点微博和标识微博分别作为分类模型的观察序列和状态序列来计算相关度分类。其次,通过构造自适应模型对识别模型进行更新且削弱数据稀疏问题,并从相关微博中选取新的观察序列,其余作为新的状态序列进行迭代分类处理。实验表明,该方法比传统方法综合指标F值平均提升4.13%。