论文部分内容阅读
为克服常规网络收敛速度慢、无法结合专家知识等缺点,引入补偿模糊神经元,结合模糊系统强大的知识表达能力和神经网络优秀的自学习能力,并利用自适应学习速率法动态地改变学习率.提出了一种新型的基于自适应学习速率法的补偿模糊神经网络,并将其应用到实际例子中.结果证明,它不仅能在线适当调整参数,还能动态地优化相应的模糊推理,加快训练速度.