论文部分内容阅读
该文提出改进的PSO-BP算法在洪水预测应用中建立预测模型.以BP神经网络为基础,提取观测站往年平均径流量作为洪水属性.采用改进的PSO-BP算法对神经网络的各个参数进行优化,最后建立模型应用于流域观测站的洪水预报模型,叙述了PSO粒子群算法和BP神经网络算法,详细阐述粒子群算法优化BP神经网络的权值和阈值,得出最优的BP神经网络预测适应度值.通过实验仿真对比,结果表明此方法预测结果比BP神经网络算法和混沌径向基神经网络模型算法精度更高,提高了预测的效率.