论文部分内容阅读
内容针对手写数字的图像特征维度过大的问题,提出了一种改进的深度神经网络算法。该算法利用20个卷积层提取手写数字图像的特征向量,特征向量经过Re LU激活函数后被20个池化层进一步降低向量维度,降维后的数字图像计算量大大降低。采用整流线性单元函数作为激活函数,有效解决了梯度消失问题和过拟合问题。