论文部分内容阅读
对流经无限竖直多孔平板的不可压缩粘性导电流体,稳定的传热传质混合对流MHD流动问题,给出了精确解和数值解.假定均匀磁场横向作用于流动方向,考虑了感应磁场及其能量的粘性和磁性损耗.多孔平板有恒定的吸入速度并均匀地混入流动速度.用摄动技术和数值方法求解控制方程.得到了平板上速度场、温度场、感应磁场、表面摩擦力和传热率的分析表达式.相关参数取不同数值时,用图形表示出问题的数值结果.讨论了从平板到流体的Hartmann数、化学反应参数、磁场的Prandtl数,以及包括速度场、温度场、浓度场和感应磁场等其它参数的影响.可以发现,热源/汇或Eckert数的增大,极大地提高了流体的速度值.x-方向的感应磁场随着Hartmann数、磁场的Prandtl数、热源/汇和粘性耗散的增大而增大.但是,研究表明,随着破坏性化学反应(K>0)的增大,流动速度、流体温度和感应磁场将减小.对色谱分析系统和材料加工的磁场控制,该研究在热离子反应堆模型、电磁感应、磁流体动力学传输现象中得到了应用.
The exact solutions and numerical solutions of the incompressible viscous conductive fluid flowing through an infinite vertical porous plate and the steady convection MHD flow are given.It is assumed that the uniform magnetic field acts transversely to the flow direction and the induced magnetic field and its Energy viscosity and magnetic loss.The porous plate has a constant suction velocity and mixed with the flow velocity uniformly.The governing equation is solved by perturbation technique and numerical method.The velocity field, temperature field, induced magnetic field, surface friction force and transmission The results show the numerical results of the problem with different values. The Hartmann number from the plate to the fluid, the chemical reaction parameters, the Prandtl number of the magnetic field and the velocity field including the temperature field, the temperature field, Concentration field and induced magnetic field and other parameters.It can be found that the increase of heat source / sink or Eckert number greatly increases the velocity of the fluid.X-direction induced magnetic field changes with Hartmann number, Prandtl number of magnetic field, heat source / Sink and the increase of viscous dissipation.However, the research shows that with the destructive chemical reaction (K> 0) increases, the flow rate, fluid temperature and induction The magnetic field will be reduced.For the chromatographic analysis system and the magnetic field control of material processing, the research has been applied in the thermionic reactor model, electromagnetic induction and magnetohydrodynamics transmission phenomena.