论文部分内容阅读
目前,小推力逃逸轨道优化的大部分研究限于平面内逃逸或对发动机模型做无约束简化处理。通过在性能指标中引入一个待定参数,采用间接法将系统两点边值问题的待定参数约束在多维单位球里;同时结合同伦思想和曲线拟合技术,由短时间无约束平面内燃料最优逃逸问题开始,逐步求解长时间有约束平面外燃料最优逃逸问题。数值仿真结果表明该方法收敛性好,能求解复杂逃逸问题,是一种高效的逃逸轨道设计方法。
For the moment, most studies of small thrust orbit optimization are limited to in-plane escape or unconstrained simplification of the engine model. By introducing a parameter to be determined in the performance index and using the indirect method to constrain the unknown parameters of the two-point boundary value problem in the multi-dimensional unit sphere, combining the theory of homotopy and curve fitting, The problem of optimal escape is solved, and the optimal escape problem of constrained out-of-plane fuel for a long time is solved step by step. Numerical simulation results show that the proposed method has good convergence and can solve the complex escape problem. It is an efficient design method of escape trajectory.