论文部分内容阅读
K—means算法是一种常用的聚类算法,但是聚类中心的初始化是其中的一个难点。笔者提出了一个基于层次思想的初始化方法。一般聚类问题均可看作加权聚类,通过层层抽样减少数据量,然后采用自顶向下的方式,从抽样结束层到原始数据层,每层都进行聚类,其中每层初始聚类中心均通过对上层聚类中心进行换算得到,重复该过程直到原始数据层,可得原始数据层的初始聚类中心。模拟数据和真实数据的实验结果均显示基于层次抽样初始化的K—means算法不仅收敛速度快、聚类质量高,而且对噪声不敏感,其性能明显优于现有的相关算法。