论文部分内容阅读
由于实际工业中工作池内钢水与表面锌渣存在部分重叠和边界不清以致识别较难的情况,提出了一种基于U-Net(U型神经网络)网络的锌渣识别方法。该方法先是把工业摄像头采集到的工作池图像进行灰度化,均值滤波等多种平滑模糊处理后,再采用完善的U-Net网络进行轮廓提取。接着将所得图像做二值化处理后,通过OpenCV(跨平台计算机视觉库)自带函数获得结果并对其进行分析。实验结果表明,基于U-Net的锌渣识别方法不仅能准确快速地区分钢水与表面锌渣,也能降低人工经验中存在的误差。