论文部分内容阅读
利用近红外光谱(NIR)结合化学计量学方法建立一种定量监测土壤有机碳组成的新方法.对109个土壤样品进行近红外光谱采集,按常规方法测定土壤样品中总有机碳(SOC)及土壤样品中胡敏酸(HA)和富里酸(FA)有机碳的含量,再应用径向基函数(RBF)人工神经网络建立土壤样品的近红外光谱和有机碳组成含量间的数学校正模型.所建模型通过遗传算法(GA)自动选择最佳光谱处理方法和最优网络拓扑结构,同时构建了全光谱数据神经网络和GA自动优化光谱波段的神经网络模型,讨论了敏感光谱的选取对模型预报性能的影响.采用多元散