论文部分内容阅读
针对传统的波达方向(DOA)估计算法在实际应用中普遍存在计算量较大,无法实时地跟踪期望信号且无法处理信号源数大于天线阵元数的问题,提出了一种在智能天线中基于径向基神经网络的波达方向估计算法.该算法利用神经网络进行多信号源跟踪(MUST)来完成信号源侦测和DOA估计.通过建立神经网络DOA估计算法模型,并对所建立的神经网络进行训练.通过仿真将该算法与传统的DOA估计算法进行比对的结果表明,基于径向基神经网络的波达方向估计算法能够快速准确的检测到信号源,响应时间明显快于传统的算法.