h-ADAPTIVITY ANALYSIS BASED ON MULTIPLE SCALE REPRODUCING KERNEL PARTICLE METHOD

来源 :应用数学和力学(英文版) | 被引量 : 0次 | 上传用户:yzl417801753
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-triangulation(LDT) techniques, which were suitable and effective for h-adaptivity analysis on 2-D problems with the regular or irregular distribution of the nodes. The results of multiresolution and hadaptivity analyses on 2-D linear elastostatics and bending plate problems demonstrate that the improper high-gradient indicator will reduce the convergence property of the hadaptivity analysis, and that the efficiency of the LDT node refinement strategy is better than SNN, and that the presented h-adaptivity analysis scheme is provided with the validity, stability and good convergence property.
其他文献
研究广义Birkhoff系统的积分不变量.给出系统存在积分不变量的条件,在此条件下导出系统的线性积分不变量、通用积分不变量和二阶绝对积分不变量.举例说明结果的应用.
采用中子n-反中子n与中性介子π0强相互作用的Lorentz不变耦合模型,对n-n重正化链图传播子作了有关物理分析及其严格解析计算,获得精确理论计算结果.进而将此结果用于n+n→2
基于核学习的强大非线性映射能力,结合用于回归建模的线性偏最小二乘(PLS)算法,提出一种小波核偏最小二乘(WKPLS)回归方法.该方法基于支持向量机使用的经典核函数技巧,将输入
针对广义Birkhoff系统动力学,提出广义Birkhoff系统动力学的一类逆问题,研究由已知积分流形来建立广义Birkhoff方程.这类逆问题的解通常不是唯一的,需给出必要的补充要求.最
提出了一种通过相空间压缩实现时空混沌系统广义同步的方法.以Fitzhugh-Nagumo反应扩散时空混沌系统为例,仿真模拟说明了该方法的有效性与实用性.通过研究有界噪声作用下该系
提出一种用于描述潮流计算中PV-PQ节点转换逻辑的光滑化互补约束模型.电压控制节点的无功出力达到限制值后会失去对受控节点的控制,其转换关系能采用非线性互补约束模型描述.
On the basis of Morison’s empirical formula and modal separation method in estimating the force and torque exerted by internal solitary waves (ISWs) on a cylin
Parametric vibration of an axially moving, elastic, tensioned beam with pulsating speed was investigated in the vicinity of subharmonic and combination resonanc
By the aid of the penalty function method, the equilibrium restriction conditions were introduced to the isoparametric hybrid finite element analysis, and the c
提出了两种专家判断矩阵一致性调整的新方法:一般的Hadamard凸组合(Easy-HCC)方法和基于系统聚类分析的Hadamard凸组合(HCC)方法.首先利用判断矩阵的生成元生成一致的正互反