基于粒子群优化及高斯过程回归的铅酸电池荷电状态预测

来源 :南京理工大学学报:自然科学版 | 被引量 : 0次 | 上传用户:blusky
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了提高铅酸电池荷电状态(SOC)的预测准确率,该文提出一种基于粒子群优化的高斯过程回归(PSO-GPR)算法。该算法的核心思想是通过粒子群优化(PSO)算法来解决高斯过程回归(GPR)模型中的超参数优化问题。PSO-GPR首先随机生成一个粒子群,群中的每个粒子包含对应的GPR超参数信息。随后执行如下迭代步骤:根据当前每个粒子的超参数信息训练对应的GPR模型并评估该模型的性能,结合适应度函数和每个模型的评估结果计算出每个粒子的适应度,并更新每个粒子中的超参数信息;经过多次迭代后,找到粒子群中适应度最小的粒
其他文献