论文部分内容阅读
本文利用了“正规子群及群阶与表现的关系”中的理论及有关定理证明了8个相关问题:(1)奇阶群中非单位元的任何不能与其逆元共轭。(2)奇阶群的阶与共轭元类之个数 r(G),有关系式O(G)r(G)(mod16)。(3)有限群 G 之正则表现如有非恒同的实不可约成份,则 O(G)为偶数。(4)奇阶群中任一个共轭元素类与它的逆类互异(单位元类除外)。(5)奇阶群 G 中共轭元素类之个数也必为奇数。(6)有限群 G 之共轭元素类的个数等于1/(0(G))O(Z_G(x))。(7)H 是群 G 之真子群,则 r(H)