Fe-Co合金晶格参量、原子磁矩及比热特性的价键理论分析

来源 :中南矿冶学院学报 | 被引量 : 0次 | 上传用户:woodcock999
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
0-75at%Co的Fe-Co合金,具有一系列的物理性质。运用新建立起来的固溶体综合理论,对此作出了较为满意的解释。原子态主要受最近邻〈F.N.N〉原子的影响。设i元素的原子状态以F.N.N中溶质原子个数j标记,则j特征原子态特征参量可表为Q_(ij);相应的状态浓度为c_(ij),它服从随机分布规律: c_(1j)=(j!/(J-j)!j!)(1-c)~(J-j+1)c~j c_(2j)=(j!/(J-j)!j!)(1-c)~(J-j)c~j合金相应的平均参量Q=∑c_(ij)Q_(ij)称之为特征参量相加定律。根据Fe-Co合金实验规律,并利用上述定律,确定了Fe,Co原子的特征态以及与之相应的特征参量;再代入同一公式,算出了无序合金α-c,m-c理论曲线。认为有序化过程中,各特征原子态的价电子结构不变,只是状态浓度发生变化,导致合金性质改变。利用有序度的概念,以及根据统计学观点,导出了Fe,Co特征原子态浓度计算式: c_(Fsj)=(J!/(J-j)!j!){(1/2)(c+η/2)(1-c+η/2)~(j-i)(c-η/2)~j+(1/2)(c-η/2)~(j+J)(1-c-η/2)~(J-j)} c_(Coj)=(J!/(J-j)!j!){(1/2)(1-c-η/2)(c-η/2)~j(1-c+η/2)~(J-j) +(1/2)(1-c+η/2)(c+η/2)~(J-j)}计算结果,最大有序度合金与无序合金的α-c曲线在38at%Co处相交,这与实验结果极为一致;有序合金的平均原子磁矩均比无序的大,亦与实验规律相吻合。将特征参量相加定律应用于合金平均结合能E_c计算中,对该合金比热特性作出了解释。计算结果表明,有序→无序转变,是结合能高〈即努阱深〉的态向势阱浅的态之转变过程,从而,出现正常比热峰;正常比热峰温度T_(NS)-C曲线与E_c-c理论曲线有类似的变化规律,说明T_(NS)高低应由有序合金结合能决定。当加热有序合金至一特定温度T_(as)时,发生部分有序→无序转变,这是势阱很深的态向势阱浅的态之转变过程,需要很高的激活能,出现正的反常峰;当加热无序合金时,情况将与上述相反,故将出现负的反常峰。此外,认为相互转变的两态间特征结合能差值愈小,则激活能愈小,转变量愈大,比热峰愈高。以此解释了反常比热峰温度T_(as)以及峰高与Co含量的关系。 0-75at% Co Fe-Co alloy, with a series of physical properties. Using the newly established theory of solid solution synthesis, a more satisfactory explanation has been made. The atomic states are mainly affected by the nearest neighbor atoms. Suppose the atomic state of element i is marked by the number j of solute atoms in FNN, then the characteristic parameter of j-state atomic states can be expressed as Q_ (ij); the corresponding state concentration is c_ (ij), which follows the rule of random distribution: c_ (1j ) = (j j / j j!) (1-c) ~ (J - j + 1) c ~ j c ~ (2j) = ~ (Jj) c ~ j alloy corresponding to the average of the corresponding parameters Q = Σc_ (ij) Q_ (ij) called the sum of the law of characteristic parameters. According to the experimental rule of Fe-Co alloy and using the above law, the characteristic states of Fe and Co atoms and the corresponding characteristic parameters were determined. Then the same formula was used to calculate the theoretical curve of α-c and m-c. It is considered that in the process of ordering, the valence electron structure of each characteristic atomic state remains the same, only the state concentration changes and the properties of the alloy change. Based on the concept of degree of order, and according to the statistical point of view, the formula for calculating the atomic concentration of Fe and Co is derived as follows: c_ (Fsj) = (Jj / Jj) η / 2 ⁢ 1 - c + η / 2 ~ ji ⁢ c - η / 2 ~ j + 1/2 ⁢ c - η / 2 ~ j + J ⁢ 1 - c - η / 2) ~ (Jj)} c_ (Coj) = (J! / (Jj)! J!) {(1/2) (1-c-? / 2) (c-? / 2) -c + η / 2) ~ (Jj) + (1/2) (1-c + η / 2) (c + η / 2) ~ (Jj) The α-c curves intersect at 38at% Co, which is in good agreement with the experimental results. The average atomic magnetic moments of the ordered alloys are larger than those of the unordered ones and agree well with the experimental rules. The law of sum of characteristic parameters was applied to calculate the average binding energy E_c, and the specific heat characteristics of the alloy were explained. The results show that the transition from ordered to disorder is the transition from the shallow state with the high potential energy well, which leads to the normal specific heat peak. The normal specific heat peak temperature T_ (NS) -C curve and E_c-c theoretical curve have similar changes, indicating T_ (NS) level should be determined by the order of the alloy binding energy. Partial sequence → disorder transition occurs when the ordered alloy is heated to a specific temperature T_ (as), which is a transition from a shallow potential well to a shallow potential state, requiring a high activation energy to appear Positive anomalous peak; when heating the disordered alloy, the situation will be opposite to the above, so a negative anomalous peak will appear. In addition, the smaller the activation energy is, the larger the transition is, the higher the heat transfer peak is. In order to explain the anomalous specific heat peak temperature T_ (as) and the relationship between peak height and Co content.
其他文献
我真想说:妈妈,您可以自私一点吗?每次我感冒,头晕的天旋地转,您总会送来一杯温度刚好的药和几句“唠叨”的叮嘱;每次我埋头于作业中,您总会不知不觉的将凌乱的房间打扫干净,
一、前言随着航天和航空工业的高速发展,对铝合金提出了新的、更高的要求。宇航飞行器、导弹、火箭、喷气机发动机、运输机械、工业机械等,急需具有特殊物理性能(高比强度、
本文叙述了铁素体球墨铸铁的断裂特性,联系室温拉伸和低温冲击,初步探讨了铁素体球铁的断裂机制。 This article describes the fracture properties of ferritic ductile i
一、概述在两万多种金属间化合物中,有一类长程有序结构的化合物,如 Ni_3Al、NiAl、Fe_3Al,FeAl、(FeCoNi)_3V、Ti_3Al、TiAl等,它们都具有优良的高温性能,在一定的温度范围
随着课程改革的纵深发展,对于传统课堂教学机制进行改革,全面提高课堂效益,构建高效课堂,已经成为当前物理课程教学的迫切要求。下面就谈谈在当今背景下如何构建高效物理课堂
购车人不交养路费,稽征部门有权向挂靠公司追缴吗?    购车人不交养路费,应该向谁追缴?是不是想当然认为谁买车谁交费?可是,浙江省金华市中级人民法院近日对一起案件作出终审判决,何建萍购买的浙G 06740大货车所欠的22個月公路规费,共计84618元,全部由浙江傻球汽车租赁有限公司金华分公司承担。  2007年5月15日,金华市公路稽征处查出傻球公司户头上的浙G 06740等大货车连续拖欠了22个
一yí阵zhèn风fēnɡ吹chuī来lái,一yí片piàn叶yè子zi脱tuō离lí了le树shù枝zhī,飞fēi向xiànɡ了le天tiān空kōnɡ。  “我wǒ会huì飞fēi了le,我wǒ会huì飞fēi了le!”叶yè子zi边biān飞fēi边biān喊hǎn:“我wǒ要yào飞fēi到dào天tiān上shɑnɡ了le!”  叶yè子zi飞fēi呀yɑ飞fēi呀yɑ,飞fēi过ɡ
本文从摩擦学观点出发,通过改变粉末冶金工艺,筛选出几种机械强度高、摩擦磨损性能优异、而且是电的良导体的银及其合金基自润滑复合材料,并举例说明该材料作为超高真空中的
知道吗父子俩在林荫道上散步,突然看见一条大黑狗对着他们狂吠。儿子害怕极了,躲在爸爸身后。爸爸说:“别怕,孩子。你知道‘吠狗不咬人’这条谚语吗?”“我知道,爸爸。可是那
本文叙述了用PHI—550型给定的俄歇电子能谱(AES)研究了一种新的、性能优异的二次电子发射材料——MgO薄膜。薄膜由Ag—Mg合金经特殊高温激活工艺处理而成。以前人们对这种薄