论文部分内容阅读
领域自适应是机器学习算法研究中一个热点,多源域自适应旨在利用多个源域的相关知识辅助目标域进行学习,现有多源领域自适应方法仅关注各源域和目标域间的知识迁移,很少考虑各源域间的相关性和共享信息。为此,提出一种基于参数字典的多源域自适应学习算法(DL_MSDA),通过学习各源域模型参数的公共字典,挖掘源域间的共享知识,并将其迁移至目标域,指导目标域模型参数的学习,完成知识从多个源域到目标域的迁移。模型可利用交替迭代(ADMM)方法进行求解。实验选取经典的多源迁移学习算法DAM进行对比,并在多个迁移学习图像