论文部分内容阅读
协同过滤是推荐系统中广泛使用的最成功的推荐技术,但是随着系统中用户数目和商品数目的不断增加,整个商品空间上的用户评分数据极端稀疏,传统协同过滤算法的最近邻搜寻方式存在很大不足,导致推荐质量急剧下降。针对这一问题,本文提出了一种基于项类偏好的协同过滤推荐算法。首先为目标用户找出一组项类偏好一致的候选邻居,候选邻居与目标用户兴趣相近,共同评分较多,在候选邻居中搜寻最近邻,可以排除共同评分较少用户的干扰,从整体上提高最近邻搜寻的准确性。实验结果表明,该算法能有效提高推荐质量。