乳腺超声肿瘤动态噪声指数及分割算法

来源 :中国图象图形学报 | 被引量 : 0次 | 上传用户:harry810
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的深度学习在各种语义分割任务中取得了优异的性能,但需要大量带有准确标注的训练样本。乳腺超声由于其成像特点,导致图像对比度和分辨率低、斑点噪声较高、组织间边界模糊等,这些问题导致精确标注十分困难。超声分割数据集中存在较多非准确的标注,这些数据即标注噪声。若训练集中包含一定量的噪声,将会极大地影响网络的分割准确度。为了解决该问题,提出了一种针对超声图像的动态噪声指数及分割算法,实现在乳腺超声数据包含噪声的情况下肿瘤区域的准确分割。方法针对超声图像的噪声特点提出动态噪声指数(dynamic noise
其他文献
目的通过深度学习对乳腺癌早期的正确诊断能大幅提高患者生存率。现阶段大部分研究者仅采用B型超声图像作为实验数据,但是B型超声自身的局限性导致分类效果难以提升。针对该问题,提出了一种综合利用B型超声和超声造影视频来提高分类精度的网络模型。方法针对B型超声图像及造影视频双模态数据的特性设计了一个双分支模型架构。针对传统提取视频特征中仅使用单标签的不足,制定了病理多标签预训练。并设计了一种新的双线性协同机
目的精确的肺肿瘤分割对肺癌诊断、手术规划以及放疗具有重要意义。计算机断层扫描(computed tomography,CT)是肺癌诊疗中最重要的辅助手段,但阅片是一项依靠医生主观经验、劳动密集型的工作,容易造成诊断结果的不稳定,实现快速、稳定和准确的肺肿瘤自动分割方法是当前研究的热点。随着深度学习的发展,使用卷积神经网络进行肺肿瘤的自动分割成为了主流。本文针对3D U-Net准确度不足,容易出现假
残差神经网络(residual neural network,ResNet)及其优化是深度学习研究的热点之一,在医学图像领域应用广泛,在肿瘤、心脑血管和神经系统疾病等重大疾病的临床诊断、分期、转移、治疗决策和靶区勾画方面取得良好效果。本文对残差神经网络的学习优化进行了总结:阐述了残差神经网络学习算法优化,从激活函数、损失函数、参数优化算法、学习衰减率、归一化和正则化技术等6方面进行总结,其中激活函
目的从医学影像中进行肝脏与肿瘤分割是计算机辅助诊断和治疗的重要前提。常见的胸部和腹部扫描成像效果中,图像对比度偏低,边界模糊,需要医生丰富的临床解剖学知识才能准确地分割,所以精确的自动分割是一个极大的挑战。本文结合深度学习与医学影像组学,提出一种肝脏肿瘤CT(computed tomography)分割方法。方法首先建立一个级联的2D图像端到端分割模型对肝脏和肿瘤同时进行分割,分割模型采用U-Ne
目的去除颅骨是脑部磁共振图像处理和分析中的重要环节。由于脑部组织结构复杂以及采集设备噪声的影响导致现有方法不能准确分割出脑部区域,为此提出一种深度迭代融合的卷积神经网络模型实现颅骨的准确去除。方法本文DIFNet(deep iteration fusion net)模型的主体结构由编码器和解码器组成,中间的跳跃连接方式由多个上采样迭代融合构成。其中编码器由残差卷积组成,以便浅层语义信息更容易流入深