论文部分内容阅读
增量式支持向量机学习算法是一种重要的在线学习方法。传统的单增量支持向量机学习算法使用一个数据样本更新支持向量机模型。在增加或删除的数据样本点较多时,这种模型更新模式耗时巨大,具体原因是每个被插入或删除的样本都要进行一次模型参数更新的判断。该文提出一种基于参数规划的多重增量式的支持向量机优化训练算法,使用该训练算法,多重的支持向量机的训练时间大为减少。在合成数据集及真实测试数据集上的实验结果显示,该文提出的方法可以大大降低多重支持向量机训练算法的计算复杂度并提高分类器的精度。