论文部分内容阅读
在全年龄人口死亡模型中,较为著名的有Heligman及Pollard(1980)提出的具有8个参数的死亡率模型,也有Carriere(1992)分析美国人口死亡规律所提出的由四个生存函数:Gompertz分布、逆Gompertz分布、Weibull分布和逆Weibull分布所组成的混合参数生存模型。本文试图将He-ligman-Pollard模型与Carriere模型应用于中国分年龄、分性别的全年龄人口死亡数据,先借助R软件或Excel软件估计两种参数模型中的参数,然后利用参数Bootstrap方法计算所估参数的标准误、偏度、t统计量、置信区间等,并以此评估模型拟合的精度。最后,针对中国人口分年龄、分性别的死亡数据,提出相应的模型拟合建议。
Among the population-age death models of all ages, the well-known mortality model with eight parameters proposed by Heligman and Pollard (1980) and Carriere’s (1992) analysis of the mortality laws of the United States consists of four survival functions: the Gompertz distribution , Inverse Gompertz distribution, Weibull distribution and inverse Weibull distribution. This paper attempts to apply the He-ligman-Pollard model and the Carriere model to the population age-specific death data of all ages in China. The parameters of the two parameters models are estimated by R software or Excel software first, then the parameters Bootstrap method Estimate the standard error of parameters, skewness, t statistic, confidence interval, and so on to evaluate the accuracy of model fitting. Finally, according to the Chinese population by age, gender-specific death data, the proposed model fitting recommendations.