论文部分内容阅读
针对现有的基于Fisher准则的线性特征提取方法存在的不足,提出了一种新的改进的Fisher特征提取方法。通过重新定义类内散度矩阵与类间散度矩阵,削弱了边缘样本与边缘类别的影响,提高了准则模型的准确性,进而提高了判别矢量的特征提取能力。同时,也给出了一种实用的求解具有统计不相关的最优判别矢量集的方法,实验结果表明,算法得到的最优判别矢量具有更好的特征提取能力。