论文部分内容阅读
在现实场景中,由于设备和系统不完善或存在弱光环境导致采集的图像存在噪声,图像在压缩和传输过程中也会受到额外噪声的影响,给后续的图像分割、特征提取等处理造成干扰。传统去噪方法利用图像的非局部自相似性(NLSS)特性和变换域中的稀疏表示,基于块匹配和三维滤波(BM3D)的方法展现出了强大的图像去噪性能。随着人工智能的发展,基于深度学习的图像去噪方法取得了较为突出的表现。但是到目前为止几乎没有相关研究对图像去噪的方法进行全面的比较。针对传统的图像去噪方法及近年来兴起的基于深度神经网络的图像去噪方法,首先介