论文部分内容阅读
数据挖掘技术中的聚类算法是解决客户细分问题的重要算法之一。为解决传统聚类算法在客户细分问题中分类精度较低、收敛速度较慢的问题,着重对比分析传统聚类算法中K-means、自组织映射网络和粒子群3种算法的不足,提出融合3种算法优点的混合型聚类算法,该算法利用K—means和自组织映射网络对初始聚类中心进行优化,结合粒子群优化和K-means优化聚类迭代过程,并在迭代优化过程中设计避免算法因早熟而停滞的机制。针对移动电子商务环境下的餐饮业客户细分问题,建立移动餐饮业客户细分模型,并利用混合型聚类算法、K-mea