论文部分内容阅读
集成学习是一种受到广泛认可和使用的机器学习算法.为此提出一种新的多类集成学习算法,即AdaBoost belief.此算法改进多类集成学习算法AdaBoost·SAMME,使每个基分类器对于每个类别都有权重信息.这种类别上的权重被称为类别信念,可通过计算每次迭代中各个类别的正确率得到.将所提出的算法与原有的AdaBoost·SAMME算法从预测准确率、泛化能力以及理论支持等方面进行比较发现:在高斯数据集、多种UCI数据集以及基于日志的多类别入侵检测应用中,该算法不但具有更高的预测准确率