论文部分内容阅读
基于RGB视频序列的双人交互行为识别已经取得了重大进展,但因缺乏深度信息,对于复杂的交互动作识别不够准确。深度传感器(如微软Kinect)能够有效提高全身各关节点的跟踪精度,得到准确的人体运动及变化的三维关节点数据。依据RGB视频和关节点数据的各自特性,提出一种基于RGB和关节点数据双流信息融合的卷积神经网络(CNN)结构模型。首先,利用Vibe算法获得RGB视频在时间域的感兴趣区域,之后提取关键帧映射到RGB空间,以得到表示视频信息的时空图,并把图送入CNN提取特征;然后,在每帧关节点序列中构建矢