论文部分内容阅读
径向基函数(RBF)神经网络可广泛应用于解决信号处理与模式识别问题,目前存在一些学习算法用来确定RBF中心节点和训练网络,对于确定RBF中心节点向量值和网络权重值可以看作同一系统问题,因此该文提出把扩展卡尔曼滤波器(EKF)用于多输入多输出的径向基函数(RBF)神经网络作为其学习算法,当确定神经网络中网络节点的个数后,EKF可以同时确定中心节点向量值和网络权重矩阵,为提高收敛速度提出带有次优渐消因子的扩展卡尔曼滤波器(SFEKF)用于RBF神经网络学习算法,仿真结果说明了在学习过程中应用EKF比常规RBF