论文部分内容阅读
为了提高噪声环境中的语音识别率,将独立成分分析(ICA)方法用于语音信号特征提取.并使用遗传算法(GA)将提取出来的高维特征进行选择,最后得到的语音特征被用于基于高斯混合模型的语音识别应用中,并与传统的Mel倒谱系数(MFcC)特征进行比较。实验结果表明基于ICA与GA的语言特征优于传统的MFCC特征。