A GAUSSIAN MIXTURE MODEL-BASED REGULARIZATION METHOD IN ADAPTIVE IMAGE RESTORATION

来源 :Journal of Electronics(China) | 被引量 : 0次 | 上传用户:aiming6946s
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
A GMM (Gaussian Mixture Model) based adaptive image restoration is proposed in this paper. The feature vectors of pixels are selected and extracted. Pixels are clustered into smooth,edge or detail texture region according to variance-sum criteria function of the feature vectors. Then pa-rameters of GMM are calculated by using the statistical information of these feature vectors. GMM predicts the regularization parameter for each pixel adaptively. Hopfield Neural Network (Hopfield-NN) is used to optimize the objective function of image restoration,and network weight value matrix is updated by the output of GMM. Since GMM is used,the regularization parameters share properties of different kind of regions. In addition,the regularization parameters are different from pixel to pixel. GMM-based regularization method is consistent with human visual system,and it has strong gener-alization capability. Comparing with non-adaptive and some adaptive image restoration algorithms,experimental results show that the proposed algorithm obtains more preferable restored images. A GMM (Gaussian Mixture Model) based adaptive image restoration is proposed in this paper. The feature vectors of pixels are selected and extracted. Pixels are clustered into smooth, edge or detail texture regions according to variance-sum criteria function of the feature vectors. Then the pa-rameters of GMM are calculated by using the statistical information of these feature vectors. GMM predicts the regularization parameter for each pixel adaptively. Hopfield Neural Network (Hopfield-NN) is used to optimize the objective function of image restoration, and network weight Since GMM is used, the regularization parameters share properties of different kind of regions. In addition, the regularization parameters are different from pixel to pixel. GMM-based regularization method is consistent with human visual system , and it has strong gener-alization capability. Comparing with non-adaptive and some adaptive image restoration algorithms, experimental resul ts show that the proposed law more than restored images.
其他文献
  连续热镀锌过程中,取消沉没辊封住镀槽中的锌液,电磁封流是首选技术。本文采用三维有限元方法模拟了低频行波电磁封流过程。利用自制磁封简易装置测得同态锌板所受电磁力数
冬日,走进“塞北小江南”之称的北大荒农垦集团建设农场有限公司,映入眼帘的是干净整洁的街道、错落有致的别墅群,一幅冰雕玉琢的壮美画卷尽收眼底.2020年,建设农场有限公司
期刊
  在不同强度(0T、2T和4T)的磁场条件下,使用水溶性介质电化学共沉积法制备了Sm-Fe薄膜。通过SEM和XRD等手段进行了薄膜的成分、形貌观察及物相组成等分析,研宄了有无磁场条
  研究了12T稳恒强磁场对Cu-25%Ag合金凝固微观组织的影响。在Cu-25%Ag合金凝固过程中施加12T强磁场,微观组织分析发现:较无磁场时,富Cu枝晶的方向性减弱。Cu-Ag共晶区域分析表
随着聚氨酯硬泡体施工工艺的不断变革,聚氨酯硬泡体保温材料在建筑保温防水领域得到了广泛应用,已成为主导市场的防水保温节能产品之一。 With the continuous development
  研究了搅拌频率为2Hz时,搅拌电流为100A、200A、350A对Cu-6%Ag合金组织与性能的影响。随电流增加,合金宏观组织中晶粒逐渐细化,分布逐渐均匀;随搅拌电流增加,初生Cu枝晶一次枝
  为了能够更充分的对连铸板坯液芯进行搅拌,提出了一种新的能够同时产生沿周向的旋转力和沿连铸方向的行波力的电磁搅拌系统。本文建立了该系统的模型。模拟研究了此系统产
新时期下,随着物流行业的快速发展,其影响力也越来越大.就目前而言,现代物流及供应链管理在很多企业中都有广泛应用,对于物流管理其着重于企业内部经营管控,而供应链管理则是
  基于ANSYS有限元软件,建立数学模型模拟金属凝固过程中电磁场和流场的耦合作用,并进行了实验验证。模拟和实验结果表明随着磁感应强度的增大,金属熔体搅动的速度不断增大,并
  本文主要对Fe-C-(~0.05%)S系合金熔体凝固过程中施加脉冲电场处理,分析脉冲电场的影响,同时加入稀土元素RE比较其对硫元素分布以及夹杂物性状的作用。通过扫描电镜(SEM, JSM