论文部分内容阅读
用一个常规线性模型对被控对象进行辨识,线性模型辨识的余差用一个神经网络进行补偿,线性模型和神经网络共同构成对象的辨识模型。利用参考模型的输出状态和被控对象的预测值,提出了适于任何形式被控对象的广义离散MRACS设计方法,适用于线性、非线性、最小相位和非最小相位系统。仿真结果表明,系统响应速度快,能够跟踪任意给定的参考序列,具有较强的鲁棒性和较好的控制精度,从而拓宽了模型参考自适应控制的应用范围。