论文部分内容阅读
利用微分不等式技巧研究了一类二阶非线性Hammerstein型积分微分差分方程的线性边值问题。以二阶边值问题的已知结果为基础,建立了微分差分非线性方程解的存在性,以及Hammerstein型线性方程解的唯一性。在上下解存在的条件下,构造迭代序列,由Arzea-Ascoli定理和Lebesque控制收敛定理得到了二阶非线性Hammerstein型积分微分差分方程的线性边值问题的解的存在性。再利用反证法获得了解的唯一性。结果表明:这种技巧也为其它边值问题的研究提出了一种思路。