小样本红外图像的样本扩增与目标检测算法

来源 :控制理论与应用 | 被引量 : 0次 | 上传用户:tobenumberone123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
深度卷积神经网络模型在很多公开的可见光目标检测数据集上表现优异,但是在红外目标检测领域,目标样本稀缺一直是制约检测识别精度的难题.针对该问题,本文提出了一种小样本红外图像的样本扩增与目标检测算法.采用基于注意力机制的生成对抗网络进行红外样本扩增,生成一系列保留原始可见光图像关键区域的红外连续图像,并且使用空间注意力机制等方法进一步提升YOLOv3目标检测算法的识别精度.在Grayscale-Thermal与OSU Color-Thermal红外–可见光数据集上的实验结果表明,本文算法使用的红外样本扩
其他文献
针对移动装弹机械臂系统非线性、强耦合、受多种不确定因素影响的问题,本文基于自适应动态规划方法,提出了仅包含评价网络结构的轨迹跟踪控制方法,有效减小了系统跟踪误差.首先,考虑到系统非线性特性、变量间强耦合作用及重力因素的影响,通过拉格朗日方程建立了移动装弹机械臂的动力学模型.其次,针对系统存在不确定性上界未知的问题,建立单网络评价结构,通过策略迭代算法,求解哈密顿–雅可比–贝尔曼方程,基于李雅普诺夫稳定性理论,设计了自适应动态规划轨迹跟踪控制方法.最后,通过仿真实验将该控制方法与自适应滑模控制方法进行了对比
在选矿生产过程中,磨机给矿粒度对磨矿分级效率影响重大,是一个关键的控制参数.由于矿石表面不规则、棱线较多,同时存在矿石间堆叠的问题,给基于图像的矿石粒度检测带来极大困难.本文提出一种基于GAN–UNet的矿石图像分割方法,针对矿石图像棱线易引起矿石边缘错误识别的问题,采用生成对抗网络进行图像分割,将U–Net作为图像分割生成器网络,使用人工标记的矿石边缘图像作为真实图像,随后构建判别器网络以判断图