论文部分内容阅读
对高光谱数据进行预处理是提升高光谱建模精度十分必要且有效的途径。利用高光谱技术分析春小麦作物光谱及其叶绿素含量的变化,对原始光谱反射率及对应的对数、倒数、平方根、对数倒数等4种数学变换及其一阶、二阶微分进行预处理运算,分析春小麦叶片叶绿素含量与预处理后的光谱数据相关性,基于选取的敏感波段对春小麦抽穗期叶绿素含量进行偏最小二乘回归法、BP神经网络2种方法建模并进行模型验证及比较。结果表明:对原始光谱数据数学变换的微分预处理可以明显提高春小麦叶片叶绿素含量与光谱反射率的相关性;通过显著性检验的敏感波段数量经一