论文部分内容阅读
局部敏感鉴别分析(LSDA)是一种基于向量学习的提取特征的算法,该算法使得属于同一类的相邻数据经投影后尽量靠近,但不同类的邻近数据则相远离.在实际应用中,由于小样本问题,通常先利用PCA算法对原始数据进行降维处理,然后再使用LSDA算法提取特征.然而,这种方法会丢掉一些重要的鉴别信息.提出了最大边距局部敏感鉴别分析(MM-LSDA)算法,直接从原始数据中提取特征,避免了鉴别信息的损失,同时使得同类中的近邻数据尽量靠近,而不同类之间的样本远离.在ORL和Yale人脸库上的仿真实验表明此算法更有效.